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ABSTRACT
Mobile code distribution relies on digital signatures to guar-
antee code authenticity. Unfortunately, standard signature
schemes are not well suited for use in conjunction with pro-
gram transformation techniques, such as aspect-oriented pro-
gramming. With these techniques, code development is per-
formed in sequence by multiple teams of programmers. This
is fundamentally different from traditional single-developer/
single-user models, where users can verify end-to-end (i.e.,
developer-to-user) authenticity of the code using digital sig-
natures. To address this limitation, we introduce FLEX, a
flexible code authentication framework for mobile applica-
tions. FLEX allows semi-trusted intermediaries to modify
mobile code without invalidating the developer’s signature,
as long as the modification complies with a “contract” issued
by the developer. We introduce formal definitions for secure
code modification, and show that our instantiation of FLEX
is secure under these definitions. Although FLEX can be in-
stantiated using any language, we design AMJ—a novel pro-
gramming language that supports code annotations—and
implement a FLEX prototype based on our new language.

1. INTRODUCTION
In recent years, software development has evolved from a

centralized to a distributed activity. Modern development
techniques and paradigms emphasize multiple code contrib-
utors, often working“in series”by adding further functionali-
ties, components, and refinements to an application. Promi-
nent examples of distributed development paradigms include
Aspect Oriented Programming [15] (AOP), Reflection [24],
and Contract-driven development [18]. Because of the flex-
ibility of these approaches, and because they fit well within
the BYOD paradigm, the research community has started
to apply distributed development approaches to smartphone
software [2].

Smartphones have traditionally relied on closed market-
places for code distribution. This model involves three par-
ties: (i) one or more developers, who builds smartphone apps
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in its entirety; (ii) the app marketplace (e.g., the Google Play
Store [12], the Apple App Store [1], and the Firefox Market-
place [9]), which distributes smartphone apps; and (iii) the
user who runs apps downloaded from the app marketplace.
As a prominent example of this model, the Google Play Store
guarantees app authenticity by requiring that all apps are
cryptographically signed by their respective developers [23].
This prevents code modifications, because it allows users to
verify end-to-end (i.e., developer-to-user) app authenticity.

Unfortunately, this approach to code authentication is not
well suited for distributed development processes. By hav-
ing multiple independent developers who contribute code at
different points in time, each (legal) code modification in-
validates all previously issued signatures.

Further, the current code authentication approach pre-
vents app marketplaces from implementing benign code mod-
ifications. For instance, Armando et al. [2] introduced the
notion of meta-market—an entity that redistributes mobile
apps to a group of federated mobile devices. The meta-
market performs security analysis of apps and, if needed,
refines the apps’ code to neutralize possible vulnerabilities,
and to add code instrumentation. However, by modifying
the application’s code, the meta-market invalidates the de-
veloper’s signature.

Any modification implemented by the meta-market re-
quires a new signature, which can be issued by either the
developer or the meta-market itself. We argue that neither
option is satisfactory. Clearly, requiring the developer to
review and sign potentially hundreds of different modifica-
tions is not sustainable. On the other hand, replacing the
developer’s signature with a new one from the meta-market
prevents the user from performing end-to-end app authen-
tication, and gives the developer no control on which mod-
ifications are performed by the meta-market. In addition
to security issues, this approach can potentially raise both
legal (e.g., does any modifications violate the developer’s li-
cense agreement?) as well as technical concerns (how can
modifications be implemented reliably when the app’s source
code is not available?).

To address these problems, in this paper we introduce
FLEX, a flexible code authentication framework. FLEX al-
lows: (i) the developer to define constraints on modifications
of his mobile apps, (ii) a third party (e.g. the meta-market)
to perform targeted modifications and, (iii) the user to ver-
ify end-to-end app authenticity. In addition, it lets the user
check which modifications have been applied to an app.

As a proof of concept, and to provide formal proofs on the
framework’s properties, we developed a simple programming



language called Annotated Middleweight Java (AMJ), which
extends Middleweight Java [4]. At the core of AMJ there
are rewriting rules: the developer annotates the app’s source
code using these rules, which specify legal modifications that
can be implemented by the meta-market. Annotations have
no effect on the semantics of the app at runtime, and are
ignored by the execution environment. We emphasize that
FLEX can be instantiated with languages other than AMJ.
In fact, rewriting rules equivalent to those presented in this
work can be developed for any languages that supports late
binding, including Java and C#.

In the rest of this paper, we denote the list of all anno-
tations in an app as contract. The developer signs the app
and the contract, and then sends the resulting package to
the app marketplace for distribution. The meta-market re-
trieves the app from the marketplace, and uses the contract
to determine which modifications can be implemented with-
out invalidating the developer’s signature. Once the meta-
market has implemented its modifications, it sends the app,
the contract, and the modifications to the user. Upon re-
ceipt, the user is able to verify the authenticity of the orig-
inal app, and that the modifications implemented by the
meta-market comply with the developer’s contract.

The proposed approach has the following benefits: (i) de-
velopers can easily enforce restrictions on meta-market mod-
ifications. The impact of those modification on the develop-
ment of the app is limited; (ii) the meta-market can safely
implement modifications according to the specifications pro-
vided by the contract; (iii) users can verify the integrity of
the developer’s code, as well as the compliance of the modi-
fications carried out by the meta-market with the restriction
imposed by the developer. Moreover, because the original
code and the contract are signed by the developer, the user
and the meta-market can keep the developer accountable if
the application does not work properly; and (iv) FLEX in-
troduces no additional overhead during app execution: all
checks are performed by the user before installing the app.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents a case study. Section 3 reviews
related work. In Section 4 we introduce our system and ad-
versary model. Section 5 presents our programming model
and defines AMJ. We show how code and annotations are
signed and how AMJ is used to guarantee the validity of
applications in Section 6. Section 7 presents our prototype.
We conclude in Section 8.

2. UNIVERSAL REMOTE: A CASE STUDY
To highlight the benefits of FLEX, we consider a universal

remote as a case study for our approach. A universal remote
is a smartphone app that can control a wide variety of de-
vices, including smart lights, HVAC, garage doors, smart
deadbolts, electric shades, and kitchen appliances. Example
of universal remotes include Google’s OpenHAB [21] and the
Wink app [27]. An important challenge when developing a
universal remote is to provide support for a large number of
protocols, required by different classes of smart devices.1

These protocols vary, among other things, in their security
requirements. For example, a universal remote connected to
the same WiFi as a smart lightbulb should be allowed to
turn the light on or off. However, the same universal remote

1For example, OpenHAB includes support for tens of
protocols.http://www.openhab.org/features-tech.html

might not be authorized to unlock arbitrary smart deadbolts
on the same network.

Ideally, the developer of a universal remote app should not
be concerned with implementing each individual protocol.
Instead, vendors should be responsible for adding appliance-
specific code to the universal remote, without invalidating
the app signature.

In this section, we argue that FLEX is well suited to
securely enable this model. To do so we discuss how a
simplified universal remote, which supports only “on” and
“off” commands, can be implemented using our framework.
The following AMJ code represents a “toy” universal remote
class:2

1 class URemote {
2
3 Device d;
4
5 // ...
6
7 void on() {
8 Message m, r in {
9 m = new Message(true);

10 this.d.send(m);
11 r = this.d.receive ();
12 if(!r.isACK ()) { this.prompt (...); }
13 }
14 }
15 }

Class URemote has a field d that represents a device con-
nector, i.e., an object that is used to exchange messages
with the device. Among the methods included in URemote,
we highlight one that is used to turn on the device (void
on()), and another that is (possibly) invoked to request the
user PIN (Message askPIN()).

A generic interaction between the universal remote and
a device, implementing the protocol in Figure 1a, includes
the following steps. The remote creates a new Message ob-
ject that indicates that device d should be turned on (line
9). Then, the message is sent to the device (line 10), which
returns a message (r, line 11) that indicates whether the
command was executed successfully. Otherwise, the univer-
sal remote handles negative responses at line 12.

Because of the lack of authentication, this code is only
suitable for controlling non-security-critical devices. Fig-
ures 1b and 1c exemplify two of the many protocols suit-
able for devices that require authentication. The former is
based on a user-provided PIN, while the latter uses a crypto-
graphic challenge-response mechanism. Each smart device
will implement one of many variants of these or possibly
other protocols.

Allowing the manufacturer to provide a “plugin” or a “de-
vice driver”, which implements a device-specific protocol, ad-
dresses this issue only from a functionality standpoint. We
believe that this plug-in- or driver-based approach is far from
ideal in terms of security and vendor/developer accountabil-
ity. In fact, the driver provided by the device manufacturer
must be allowed to run together with (or in place of) the
app code, and therefore requires the user to trust both the
app developer and the manufacturer. Additionally, the de-
veloper might not be able to specify meaningful restrictions
on the driver’s behavior.

2The syntax of AMJ is formally introduced in Section 4.
However, for this example, the reader may assume a Java-
like syntax.
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Figure 1: Three alternative protocols for the universal remote.

We believe that FLEX represents a satisfactory approach
for addressing both the functionality and security aspect of
this and other related use cases. With FLEX, the developer
annotates the code, marking not only which section can be
modified by the vendor (who in this context acts as meta-
market), but also which restrictions must be enforced on
the vendor’s code. Upon receiving the universal remote app
from the vendor, the user verifies that the original app code
has not been illegally modified, and that the legal modifi-
cations are valid according to the developer’s specifications.
We detail this approach in the rest of the paper, and com-
plete this use case in Section 6.

3. RELATED WORK
Proof-carrying Code. Proof-carrying code [20] is a
method for augmenting an application with a formal proof
(either manually or automatically generated) that guaran-
tees that the app adheres to a set of rules. The proof can be
verified automatically, and therefore does not impact usabil-
ity. This makes proof-carrying code very useful, especially
when the security properties can be completely specified by
the user within the language supported by the proof frame-
work, and the application can function correctly within these
restrictions. Nevertheless, this approach has major limita-
tions in the scenario highlighted in this paper. It is in fact
very unlikely [22] that code producers and consumers will
agree on a specific set of properties. As a consequence, a
variant called model-carrying code [22] has been more suc-
cessful. Model-carrying code consists in instrumenting a
model of the application behavior instead of providing a
proof of compliance. Although this approach is more flexible
than the one based on proof-carrying code, the parties must
still agree on the elements appearing in the model.

Secure Meta-Market. Secure meta-market is an applica-
tion distribution paradigm proposed by Armando et al. [2] to
enforce “Bring Your Own Device” (BYOD) security policies
on personal mobile devices. A meta-market stands between
the app marketplace, the user’s organization and the device
owner, allowing the organization to automatically enforce
BYOD security policies on mobile devices. The enforce-
ment of a policy usually requires modifications to the app
(e.g., to instrument it). The modifications are performed
by the meta-market, and have the side effect of invalidating
the developer’s signature. This requires the meta-market to
re-sign the app before it can be installed on mobile devices.

The meta-market model has been recently adopted out-
side the BYOD context. For instance, Cassandra [17] is a
meta-market architecture that verifies whether Android ap-

plications comply with the user’s privacy policy. Cassandra
allows users to restrict installed applications to those that
comply with a particular security policy. Users do not need
to trust the meta-market because applications carry their
own proof of compliance.

Code Rewriting. The current literature includes sev-
eral paradigms for program transformation. Among them,
Aspect-Oriented Programming [14] (AOP) and reflection [26]
are probably the most commonly used. Informally, an as-
pect consists of a fragment of code and a rewriting rule.
When aspects are defined, a program can be modified by
inserting invocations to the aspects’ code. Also, using As-
pect Weaving [5] the fragments carried by the aspects are
directly injected in the application code. Instead, reflection
allows programs to manipulate their own elements (e.g., pro-
cedures and classes) through specific APIs and data struc-
tures. Both AOP and reflection are compatible with our ap-
proach, and can be used for implementing a program trans-
formation framework similar to FLEX. However, we believe
that code annotations contained within comments are easier
to understand and use under our assumptions of program-
ming under a contract (see below).

The idea of using comments for annotating programs has
been proposed before. For instance, the Java modeling lan-
guage [16] (JML) allows a developer to attach specifications
to her code as comments. A specification can serve for many
purposes, such as automatic verification, and contract-based
software design. Extending JML with the syntax of our an-
notation language is feasible and allows the integration of
FLEX with a state-of-the-art specification language. How-
ever, since we target mobile code, BML [8] is a better choice,
as it implements JML specifications at the byte-code level.

Redactable and Sanitizable Signatures. Redactable
signatures [13] allow an authorized semi-trusted party to
obtain a valid signature from a redacted document with-
out any interaction with the original signer. Unfortunately,
redactable signatures are not a viable tool for adding code
to signed applications. In fact, redactable signatures only
support removal of document components.

A more promising approach consists in using sanitizable
signatures [3, 7]. Sanitizable signatures allow authorized
semi-trusted parties to modify parts of a signed message
in a limited fashion. In our scenario, this includes adding
and removing code from the mobile app without invalidat-
ing the original signature. Although this approach might
sound appealing, it has two critical drawbacks: (i) by us-
ing sanitizable signatures, the developer is able to indicate
what parts of the code can be modified, but cannot impose
any restriction on the modifications. Because the language
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Figure 2: Parties and their interaction.

used by the developer (and therefore by the meta-market)
is Turing-complete, arbitrary code injection performed by
the meta-market implies virtually no restrictions on the re-
sulting modified code; and (ii) the user cannot reliably and
securely determine the exact modifications implemented by
the meta-market. Hence, there can be no end-to-end trust
between the developer and the user.

4. SYSTEM AND ADVERSARY MODEL
In this section, we present the components of our system,

and discuss their interaction. Our system includes a devel-
oper, a meta-market, and a user (see Figure 2). The devel-
oper creates an annotated source code in AMJ, and compiles
it using the FLEX compiler. The result of this process is a
standard (signed) smartphone application, and a contract.
The contract is automatically generated from the code an-
notations, and specifies which parts of the application can
be modified by the meta-market, and how. (The language
of our code annotations is discussed in Section 5.4).

The meta-market is in charge of implementing modifica-
tions to the developer’s app, and to distribute the result-
ing code to the users. App modifications, also written using
AMJ, are distributed in source format, and are signed by the
meta-market. After receiving the original app, the contract
and the list of modifications from the meta-market, the user
verifies all signatures, and checks if the meta-market’s modi-
fications comply with the contract. If they do, the user runs a
small tool that compiles the modifications and merges them
with the original app.

Integrity and authenticity of the contract, the app, and
the modifications are guaranteed using a standard signature
scheme. The developer and the meta market have access
to their respective private (signing) keys skdev and skmm,
while all parties have access to all public keys.

More formally, let app be an application, contract a con-
tract that lists valid modifications to app, and mods a set
of modifications that can be applied to app. The developer
issues tuple D = (app, contract, γD), where γD is auxiliary
information on D (e.g., a signature on app and contract),
while the meta-market generates tuple M = (app, contract,
mods, γM ) where γM is auxiliary information on M . The
meta-market runs algorithm checkmm(D, pkdev), which re-
turns 1 if the application and the contract are valid and have
been constructed by a honest developer (i.e., all signatures
verify), and 0 otherwise. The user has access to algorithm
checkuser(M,pkdev, pkmm), which returns 1 if checkmm(D,
pkdev) = 1 and if the modifications in M are valid with re-
spect to app and contract, and have been produced by the
meta-market—and 0 otherwise.

We assume that the adversary can be internal (i.e., one of

the protocol participants) or external. In the former case,
we consider a malicious meta-market. This meta-market is
willing to covertly perform modifications to the mobile appli-
cation in violation of the developer’s contract. In the latter,
we consider an adversary who relays messages between par-
ties, and can therefore modify them in transit. Although
this can be addressed, in some cases, by using tools such as
TLS/SSL, there are scenarios in which this is not possible.
For example, the meta-market might store applications on a
cloud server that is used for distributing applications. If the
adversary is able to subvert the cloud server, it can perform
arbitrary modifications to the apps or to the contract before
they are retrieved by the user.

Internal Adversaries. We allow a malicious meta-
market to arbitrarily deviate from the intended behavior
by implementing any feasible (i.e., polynomial-time) strat-
egy. The goal of the meta-market is to construct a tuple
Mi = (appi, contracti, modsi, γMi) such that checkuser(Mi,
pkdev, pkmm) returns 1, and Di = (appi, contracti, γDi) was
never issued by the developer. In other words, the malicious
meta-market wants to surreptitiously construct a valid ap-
plication, contract, and set of modifications such that either
the applications or the contract (or both) have not been gen-
erated by the developer, or the modifications do not match
with the contract and the application.

To formally define internal adversaries, we introduce the
Forging Application Attack (FAA):

Experiment FAAA(κ)

1. A receives pkdev and (skmm, pkmm), and adaptively
requests arbitrary tuples Di = (appi, contracti, γDi) to
the honest developer.

2. Eventually, A outputs M∗ = (app∗, contract∗, mods∗,
γM∗). The experiment outputs 1 if and only if
checkuser(M∗, pkdev, pkmm) = 1 and D∗ = (app∗,
contract∗, γD∗) was never issued by the developer. Oth-
erwise, the experiment outputs 0.

Definition 1 (FAA-security). A FLEX instantiation
is secure under Forging Application Attack if there exists a
negligible function negl such that for any PPT A,
Pr[FAAA(κ) = 1] ≤ negl(κ).

External Adversaries. In this scenario, an external ma-
licious party is allowed to perform arbitrary modifications
to the messages exchanged by the protocol participants. In-
formally, the goal of the malicious party is to provide a tuple
Mi = (appi, contracti,modsi, γMi) to the user such that ei-
ther Di = (appi, contracti, γDi) was not issued by the devel-
oper, or modsi was not issued by the meta-market, or both,
and such that checkuser(Mi, pkdev, pkmm) = 1. To formalize
external adversaries, we introduce the Application Poisoning
Attack (APA):

Experiment APAA(κ)

1. A receives pkdev and pkmm. It then adaptively re-
quests arbitrary tuples Di = (appi, contracti, γDi) to
the developer, and sends tuples Dj = (appj , contractj ,
γDj ) and modifications modsj to the meta-market,
which returns Mj = (appj , contractj , modsj , γMj ) if
checkmm(Dj , pkdev) = 1, and ⊥ otherwise.



Table 1: Syntax of MJ

L ::= class C extends D { C f; K M }

K ::= C(C x) { s }

M ::= C m(C x) { s }
e ::= null | x | e.f | e.m(e) | new C(e) |

(C)e | /*@ER@*/ e
s ::= skip; | if (e1 == e2) {s1} else {s2} |

e.f = e′; | x = e; | C x in {s} |
s1s2 | return e; | /*@SR@*/ s |
/*@CR@*/ s

Abbreviations:
true , null
false , new Object()

if (e) {s1} else {s2} , if (e == null) {s1} else {s2}
if (!e) {s1} else {s2} , if (e) {s2} else {s1}
if (. . .) {s} , if (. . .) {s} else {skip;}

s1 . . . sk , s1 (s2 (· · · sk) · · · )
{s} , C x in {s} (where x 6∈ fv(s))

C x; C y in {s} , C x in { C y in {s}} (with x 6= y)

2. Eventually, A outputs M∗ = (app∗, contract∗, mods∗,
γM∗). The experiment outputs 1 iff checkuser(M∗,
pkdev, pkmm) = 1 and D∗ = (app∗, contract∗, γD∗)
was never issued by the developer, or M∗ was never
issued by the meta-market, and 0 otherwise.

Definition 2 (APA-security). A FLEX instantiation
is secure under Application Poisoning Attack if there ex-
ists a negligible function negl such that for any PPT A,
Pr[APAA(κ) = 1] ≤ negl(κ).

In the rest of the paper we define how contract, mods, γM ,
and γD are constructed, and how checkuser and checkmm

are computed in order to guarantee that the aforementioned
security properties hold.

5. PROGRAMMING MODEL
In this section we present our programming framework for

developing annotated applications.

5.1 Annotated Middleweight Java
Middleweight Java (MJ) is an object-oriented imperative

programming language proposed by Bierman et al. [4]. The
main goal of MJ is to provide a compact—yet expressive—
subset of the features of Java. With FLEX we introduce an
extension of the syntax of MJ, called AMJ, in which some
elements of the language can be also annotated with patterns
for term rewriting. The syntax of MJ is given in Table 1.

With AMJ, a new class C is defined by specializing an
existing class D (Object is the predefined, empty class).
Each class definition consists of three elements: (i) a list
of typed fields C f; (ii) a constructor K; and (iii) a list of
methods M. The constructor of a class C consists of a list
of typed parameters C x and a statement s. Each method
has a name m, a return type C, a list of parameters (e.g.,
constructors) and a statement s. An expression can be
the constant null, a variable x, a field e.f, a method in-
vocation e.m(e), an object constructor new C(e), a class
cast (C)e or an annotated expression /*@ER@*/e. A state-
ment is either: an effect-free command skip;, a conditional
branch if (e1 == e2) {s1} else {s2}, a field assignment

e.f = e′;, a variable assignment x = e;, a block C x {s},
a sequence s1 s2, a return instruction return e;, or an an-
notated statement /*@SR@*/s and /*@CR@*/s.

Annotations for expressions and statements are discussed
in Section 5.4. In the rest of this section, the reader can con-
sider annotations as code comments, which have no effects
on the execution of programs.

To improve the readability, we introduce some syntactic
sugar. We write void in method signature when its return
type is irrelevant. Also we use expression e.m(e) as a state-
ment in place of C x in {x = e.m(e);}.

Example 1. A subset of the class Message can be defined
as follows.

class Message extends Object {
Object v;
Message(Object u) {this.v = u;}
Object isACK() {

if(this.v == null)
{return null;}

else
{return new Object ();}

}
}

A Message has a payload represented by v. The method
isACK returns null when the payload is null. Otherwise it
returns a new Object(). (Recall that we treat null as the
boolean value true.)

5.2 Operational Semantics
The operational semantics of AMJ is defined in terms of

transitions between configurations, which represent the cur-
rent state of a running program.

Definition 3. A configuration is a tuple (E,H,F ) where

• E : V⇀ O∪ {null} is a variable environment map-
ping variables into object identifiers (o, o′), or null;

• H : O ⇀ (C,E) is a heap function mapping object
identifiers into object records;

• F ::= s | e | o | null | • is a term.

We write E(x) = ⊥ when x 6∈ dom(E). E|x is the environ-
ment that assigns ⊥ to x and otherwise behaves as E.

A terminal configuration is a configuration (E,H, u) where
u is either a value (i.e., a pointer o or null), or the void
element •.

The operational semantics of expressions and statements
is presented in Appendix B. An expression null is reduced
to the constant null (rule (EE-Null)), a variable x is evalu-
ated to the value v provided by the variable environment E
(rule (EE-Var)), while a field access e.f results in a value
v if e can be evaluated to a pointer o, associated to a record
(C, E) such that (i) C is a class declaring a field f and (ii)
E assigns v to f. As a side effect, the evaluation of e might
result in a new heap H ′.

A method invocation (EE-Mth) e.m(ē) consists in evalu-
ating whether e (or a value o which e evaluates to) points to
a record (C, E) such that C declares a method m, with formal
parameters x̄ and body s.3 Then, the n expressions of ē (i.e.,

3Additionally, we require that the number of actual param-
eters is the same as that of the formal parameters, which
amounts to require that x̄ and ē have the same length.



e1, . . . , en) are evaluated to obtain the corresponding values
v1, . . . , vn. Each evaluation can result in a transformation
of the heap, therefore leading to the chain H1 . . . Hn. The
body of m is evaluated after adding the mappings between
the parameters’ names x̄ and values v̄ to E. The resulting
configuration (E′o, H

′, v) defines the heap H ′ and the value
v of the result of the application of rule (EE-Mth). After
applying the rule, the environment E′o is dropped, and is
replaced by the external environment E.

A constructor new C(ē) follows rule (EE-New). This rule
requires the evaluation of the n expressions of ē (as for
method invocations). Then, it creates a new environment
Eo by initializing the fields of C mapping parameter names
to the values computed up to this point, and assigns a fresh
pointer o to the reserved name this. Finally, it adds a
new record (C, Eo) to the heap and evaluates the body s

of the constructor under Eo, until termination (because no
return value is allowed for constructors). The resulting con-
figuration consists of the original environment E, the heap
modified by the execution of s and the pointer o. The cast
expression (C)e is defined through rule (EE-New). The be-
havior on (C)e is similar to that on e, except for the side
condition requiring e to return a pointer associated to a sub-
type of C.

Rules for statements are shown in the second part of Ap-
pendix B. A skip; command does not change E and H and
reduces to the terminal symbol •. The return e; statement
results in the evaluation of e and a final configuration where
the resulting value v is returned. Conditional statements re-
quire the evaluation of the expressions in their guards. If the
comparison between the returned values succeeds (SE-Iftt),
the conditional behaves like the first statement s1. Oth-
erwise (rule (SE-Ifff)) s2 is executed. Provided that x is
defined in the current environment E, an assignment (SE-
Asgn) creates a binding between x and the value obtained
by evaluating e. Also, the assignment succeeds only if the
declared type (function DType) of x, i.e., the type appear-
ing in the declaration of the variable, is compatible with the
actual type (function V Type) of the value v. Details on the
types and the subtyping relation are provided in Section 5.3
as well as in Appendix A. Field assignments (rule (SE-Fld))
behave similarly, with the exception that expression e must
evaluate to a pointer which refers to a record of C declaring
a field f. If this is the case, the record is updated with the
new values v for f. A block (rule (SE-Blk)) behaves like its
body s, with the additional side effect that a new definition
for x is added to E when entering the block, and then re-
moved when leaving it.4 Sequences consist of the execution
of s1, possibly followed by s2. If s1 reduces to • (rule (SE-
Seqc)), then s2 is executed. Otherwise (rule (SE-Seqr))
the value generated by s1 is returned.

Example 2. Consider the class Message from Example 1.
We show the execution of statement s , Message x in {

x = new Message(null); } starting from the configuration
(∅, ∅, s).

([x \ null], ∅, null)→ ([x \ null], ∅,null) A

([x \ null], ∅, new Message(null))→ ([x \ null], H′o, o)
([x \ null], ∅, x = new Message(null);)→ ([x \ o], H′o, •)

(∅, ∅, s)→ (∅, H′o, •)
4Operator |x must remove all the entries for x created inside
the body of the block from E.

where A stands for the execution of the body of the con-

structor of Message, that is:

([u \ null] ◦ Eo, Ho, this)→ ([u \ null] ◦ Eo, Ho, o)
([u \ null] ◦ Eo, Ho, u)→ ([u \ null] ◦ Eo, Ho,null)

([u \ null] ◦ Eo, Ho, this.v = u;)→
([u \ null] ◦ Eo, [o \ (Message, [v \ null] ◦ Eo)] ◦Ho, •)

To simplify presentation, we use abbreviations Eo , [this \
o, v\null], Ho , [o\(Message, Eo)] and H ′o , [o\(Message, [v\
null] ◦ Eo)] ◦Ho.

Following the rules of the operational semantics, a con-
figuration can get stuck, i.e., it is not a final configuration,
and it admits no further reductions according to the next
definition:

Definition 4. A configuration (E,H,F ) is said to be stuck
if F is not a value and 6 ∃ E′, H ′, F ′ such that (E,H,F ) →
(E′, H ′, F ′). We denote a stuck configuration as (E,H,F ) 6→.

5.3 AMJ Type System
In this section we present the type system of AMJ. We

begin by defining the basic elements:

Definition 5. Types are defined as follows.
Expression types: τ, τ ′ ::= C | >
Statement types: σ, σ′ ::= τ | void
Method types: µ, µ′ ::= τ1 × . . .× τn → τ

The type of an expression can be either C or the value
>. Apart for the expression types, statements can also be
typed to void. Methods admit arrow type from input types
τ1, . . . , τn to output type τ .

Typing judgements have the form ∆; Γ ` t : ω where
t ∈ {e, s} and ω ∈ {τ, σ}. We use Γ and ∆ to denote type
environments for variables and classes, respectively. A vari-
able environment can be either the empty environment (∅) or
the environment obtained by adding a mapping to an exist-
ing one (e.g., Γ, x : τ). Instead, ∆ consists of an immutable
mapping between method and field names (unambiguously
identified through their class name) and their declared type
(we use functional types · → · for methods). For instance,
∆(C)(m) = C × D → D denotes that class C declares a
method m which has two arguments of type C and D and
returns an object of type D.5

Typing rules for expressions and statements are presented
in Appendix C. Expressions are typed as follows. The type
of the null constant is the top element > (TE-Null), while
the type of a variable x is provided by the current type
environment Γ (TE-Var). The weakening rule (TE-Wkn)
allows for typing an expression to τ ′ if it can be typed to
τ , being a τ a subtype of τ ′. Types of fields (TE-Fld)
and methods (TE-Mth) are given by the definition of C,
contained in ∆, as far as the base expression has type C

(and the actual parameters of a method have compatible
types). A constructor of C (TE-New) behaves similarly to
a method invocation, except for the return type which is
C itself. The cast operation (TE-Cst) types an expression

5For the sake of presentation, here we omit details on
method typing. In general, we assume that the type that ∆
associates to a method is always correct w.r.t. the method
body. For more details, we refer the reader to [4].



Table 2: Rewriting rules syntax

ER ::= erew SX; EX | erew EX
EX ::= e | EX + EX
SR ::= srew SX
SX ::= s | SX + SX

to C if it can be typed to the subclass C′. Finally, (TE-
Erew) states that if an annotated expression is typed to τ ,
then it can be typed to both its base expression and to the
annotation (annotation typing is discussed in Section 5.4).

With respect to statements, a skip; command (TS-Skip)
has type void, while a return statement (TS-Ret) has the
same type of the returned expression. A conditional state-
ment (TS-If) is typed to σ if both its branches are typed
to σ. Assignments to a field (TS-Fld) or variable (TS-
Asgn) are typed to void as far as the assigned expression
has a type which is compatible with that of the identifier,
i.e., f and x, respectively. The type of the identifiers is pro-
vided by the environment functions ∆ and Γ, respectively.
A block (TS-Blk) has the same type as the statement it
contains (typed under an environment which defines vari-
able x). The weakening rule (TS-Wkn) behaves similarly
to the rule for expressions, i.e., it allows to type a statement
to a more general type σ′. The rules for sequences behave as
follows. Rule (TS-Seq1) says that a sequence is typed to σ
(with σ 6= void) if so can be typed the two sub-statements.
Also, rule (TS-Seq2) states that a sequence is typed as its
second statement if the first one is typed to void. Finally,
rule (TS-Srew) says that we can type an annotated state-
ment to σ whenever its annotation and base expression can
be typed so.

Example 3. Consider once again the class Message from
Example 1. We type the statement s of Example 2 as follows.

∆;x : Message ` null : >
(TE-New)

∆;x : Message ` new Message(null) : Message
(TS-Asgn)

∆;x : Message ` x = new Message(null); : void
(TS-Blk)

∆; ∅ ` s : void

When applying rule (TE-New), the typing procedure also ver-

ifies that ∆(Message)(new) = Object→ Message.

An important property of typed terms is that they do
not lead to stuck configurations. In fact, for all closed (i.e.,
containing no free variables) terms t ∈ {e, s}, if t is typed to
ω, then t does not get stuck, and the value obtained when
running t is of type ω (or a subtype of ω). In other words,
typed terms do not cause faulty computations, and always
return values of the expected type. These properties are
formalized in Appendix A under Theorem 1.

5.4 Code Annotations
In this section we extend the type system of AMJ with

rules for code annotations. The syntax of the annotations
for defining rewriting rules is presented in Table 2.

Expression rewriting annotations ER can be either a state-
ment rewriting term SX followed by an expression rewriting
term EX, or simply an expression rewriting term EX. Expres-
sion rewriting terms EX can either be an expression e, or the
union/choice of two sub terms EX + EX. Statement rewrit-
ing annotations only consist of a statement rewriting term

Table 3: Annotation typing rules.

∆; Γ ` EX : τ ∆; Γ ` SX : void
(TER-Erew1)

∆; Γ . erew SX; EX : τ

∆; Γ ` EX : τ
(TER-Erew2)

∆; Γ . erew EX : τ

∆; Γ ` e : τ
(TER-Exp)

∆; Γ . e : τ

∆; Γ ` EX1 : τ ∆; Γ ` EX2 : τ
(TER-Sum)

∆; Γ . EX1 + EX2 : τ

∆; Γ ` SX : σ
(TSR-Srew)

∆; Γ . srew SX : σ

∆; Γ ` s : σ
(TSR-Stm)

∆; Γ . s : σ

∆; Γ ` SX1 : σ ∆; Γ ` SX2 : σ
(TSR-Sum)

∆; Γ . SX1 + SX2 : σ

SX. These terms can be either a simple statement s, or the
union of two terms SX + SX.

To simplify presentation, we write /*@ srew SX @*/s in-
stead of /*@ srew SX + s @*/s, and we use /*@ sins SX @*/

as an abbreviation for /*@ srew SX + skip;@*/skip;.

Example 4. We annotate class URemote from Section 2
as shown in Figure 3a. (To simplify exposition, we omitted
field KeyPair kp in Section 2.) The annotated construc-
tor can be modified to assign new RSAPair() (which repre-
sents an RSA key pair), new DHPair() (a Diffie-Hellman
key pair), or new EmptyPair() (a placeholder that repre-
sents no key) to kp. The default behavior of method on is
to initialize m with a device-specific payload. The annotation
associated with this statement allows the meta-market to re-
place the payload with a message containing the user’s PIN,
obtained calling method askPIN() (not shown). Before re-
ceiving the confirmation message r, the code can be extended
with a block of instructions. In the challenge-response pro-
tocol (Figure 1b) the universal remote signs a nonce received
from the device. The corresponding code is made legal by a
set of annotations that allow receiving the nonce, signing it,
and handling possible errors.

Extending the Type System. We complete the type
system presented in Appendix C with the annotation typing
rules reported in Table 3, which assign a type to each anno-
tation. Rules (TER-Erew1) and (TER-Erew2) state that
an expression rewriting annotation is typed to τ if it can be
typed to its base term EX. Rule (TER-Erew1) also requires
SX to have type void. Rule (TER-Exp) reduces to typing
expression e, while (TER-Sum) assigns type τ to SX1+SX2

if the two sub expression scan be typed τ . The rules for
statements behave similarly.

6. CODE VERIFICATION
In this section we show how a meta-market can verify the

authenticity and validity of the code from the developer, and
how the user verifies the same properties on the code and
modifications received from the meta-market.

We use digital signatures to guarantee the authenticity
of the data exchanged by the parties. Our instantiation



of the auxiliary information γD corresponds to a signature
on all files that compose the application and the contract.
Similarly, γM is a signature computed over γD and over all
files that constitute the modification implemented by the
meta-market.

A FLEX contract is a file containing all annotations from
the app’s source code. Each annotation is augmented with
an absolute reference to the specific piece of code it applies
to. mods consist of one or more AMJ source files, created by
the meta-market according to the contract. Each file extends
and overrides portions of the app’s code via late binding.

Given a tuple D, the meta-market invokes checkmm(D,
pkdev) to determine the validity of the contract. This func-
tion verifies that the signature on the app and the contract
is correct. Then, it runs AMJ’s type checking to deter-
mine if the contract can be honored, as detailed in sec-
tions 5.3 and 5.4. If the type system returns no errors
and all signatures verify correctly, tuple D is accepted and
checkmm(D, pkdev) returns 1. Otherwise, it returns 0.

A tupleM is checked by the user by invoking checkuser(M,
pkdev, pkmm). First, this function extracts γD from γM
and uses it to compute checkmm(D, pkdev) where D is con-
structed from M as D = (app, contract, γD). If checkmm

returns 1, then the user learns that the app has not been
tampered with since it was issued by the developer. Next,
checkuser verifies the signature on γD and mods. A pos-
itive verification indicates that the modification from the
meta-market have not been altered by an external adver-
sary. Finally, checkuser verifies mods against contract as dis-
cussed next. If the verification is successful, it compiles mods
against app. The resulting binary incorporates all modifica-
tions from the meta-market, applied to the authentic app
from the developer.

The correctness of code modifications is verified as fol-
lows. Each annotation ER (or SR) corresponds to a recursion-
free finite language LER (LSR, respectively). Given an an-
notation ER = erew EX, LER = LEX where Le = {e}, and
LEX1+EX2 = LEX1 ∪ LEX2 . Similarly, if ER = erew SX; EX,
LER = LSX · LEX (being · the sequence operator). Thus, ver-
ifying the compliance of the modifications and the contract
amounts to checking whether a term, i.e., either an expres-
sion e or a statement s, belongs to the annotation language.
In other words, we say that /*@ ER @*/ e (/*@ SR @*/ s,
respectively) is legal if and only if e ∈ LER (s ∈ LSR). An
app is legal if every annotation appearing in it is legal.

Example 5. Fragments in figures 3b and 3c implement
the protocols illustrated in figures 1b and 1c respectively. The
two figures do not show annotations, presented in Figure 3a,
and highlight code changes with “ I”. The annotation in the
constructor in Figure 3a defines the following language:

L =

 kp = new RSAPair();,
kp = new DHPair();,
kp = new EmptyPair();


Both the constructors in figures 3b and 3c are valid, because
they are obtained by replacing a statement in L with another
statement in L. A similar argument applies to method on.

To summarize, each annotation defines a finite language
that the meta-market uses to perform modifications to the
app. Given a contract (i.e., a list of annotations), the user
can verify the membership of each modification to the lan-
guage defined by the corresponding annotation. Violating

the contract is equivalent to producing one or more modifi-
cations that are not in the language defined by annotations.
Thus, the adversary cannot covertly provide illegal app mod-
ifications to the user without either violating, or altering the
contract. Next, we discuss why the user can always deter-
mine if the contract has been altered by the adversary.

Security of FLEX. We argue that FLEX is secure against
both internal and external adversaries, under the assump-
tion that the underlying signature scheme is secure against
existential forgeries. As discussed earlier in this section,
given a tuple M = (app, contract, mods, γM ), the user
can verify that the modifications in mods comply with the
contract. What we need to show next is that because of
signatures γD and γM , our instantiation of FLEX is secure
against Forging Application Attacks (Definition 1) and Ap-
plication Poisoning Attacks (Definition 2).

Theorem 1. Assuming that the underlying signature
scheme is secure against existential forgeries, the instantia-
tion of FLEX presented in this paper is FAA-secure.

Proof Proof of Theorem 1 (Sketch). Assume that
the adversary can construct, with non-negligible probabil-
ity, a tuple M∗ = (app∗, contract∗,mods∗, γM∗), such that
D∗ = (app∗, contract∗, γD∗) was never issued by the devel-
oper. Because γD∗ is a signature computed on both app∗ and
contract∗, and γD∗ was never computed by the developer,
D∗ represents a valid forgery for the underlying signature
scheme. This contradicts our hypothesis.

Theorem 2. Assuming that the underlying signature
scheme is secure against existential forgeries, the instantia-
tion of FLEX presented in this paper is APA-secure.

Proof Proof of Theorem 2 (Sketch). Assume that
the adversary can win the APA experiment with non-
negligible probability. Following the same argument as in
the proof of Theorem 1, D∗ = (app∗, contract∗, γD∗) must
have been issued by the developer. Therefore, the adver-
sary can win if and only if M∗ = (app∗, contract∗,mods∗,
γM∗) was never issued by the meta-market. However, be-
cause γM∗ is a signature computed on app∗, contract∗, and
mods∗, and the adversary has no access to the meta-market
signing key, M∗ represents a valid forgery for the underlying
signature scheme. This contradicts our hypothesis.

7. FLEX PROTOTYPE
In this section we provide further details on our prototype

implementation of AMJ. The goal of our prototype is to
show the feasibility of FLEX, and to provide a codebase
that can be used and extended by the research community.

The AMJ interpreter consists of the following components:
a lexer, a parser, an abstract syntax tree (AST) builder, an
abstract semantic graph (ASG) constructor, a type checker,
and an operational semantic executor. To build these com-
ponents, we used Xtext [29] and Xsemantics [28]. Xtext
is a framework for developing programming languages. It
is based on the Eclipse Modeling Framework, and provide
tools for building custom lexers, parsers and class models.
We used Xtext to construct the lexer and parser used in
FLEX from AMJ’s grammar specifications. The AST re-
sulting from parsing AMJ code is refined using Xtext to
add cross-links between elements (e.g., method invocations



class URemote {

Device d;
KeyPair kp;

URemote(Device dev) {
this.d = dev;
/*@ srew
this.kp = new RSAPair ();
+ this.kp = new DHPair ();

@*/
this.kp = new EmptyPair ();

}

void on() {
Message m, r in {
m = //@ erew this.askPIN ();

new Message(true);
this.d.send(m);
/*@ sins
Message nonce , s in {
nonce = this.receive ();
s = this.kp.sign(nonce);
this.d.send(s);

}
@*/
r = this.d.receive ();
if(!r.isACK ()) {
this.prompt (...);

}
}

}
// ...

}

class URemote {

Device d;
KeyPair kp;

URemote(Device dev) {
this.d = dev;

this.kp = new EmptyPair ();
}

void on() {
Message m, r in {
m =

I this.askPIN ();
this.d.send(m);

r = this.d.receive ();
if(!r.isACK ()) {
this.prompt (...);

}
}

}
// ...

}

class URemote {

Device d;
KeyPair kp;

URemote(Device dev) {
this.d = dev;

I this.kp = new RSAPair ();
}

void on() {
Message m, r in {
m =

new Message(true);
this.d.send(m);

I Message nonce , s in {
I nonce = this.receive ();
I s = this.kp.sign(nonce);
I this.d.send(s);
I }

r = this.d.receive ();
if(!r.isACK ()) {
this.prompt (...);

}
}

}
// ...

}

(a) Annotated URemote. (b) Code corresponding to Fig. 1b. (c) Code corresponding to Fig. 1c.

Figure 3: Annotation of URemote and two instantiations of modified code. Methods other than the constructor and on are
omitted.

and corresponding method implementation). This process
transforms the AST into the corresponding ASG.

Xsemantics is a plugin for Xtext that allows developers
to build custom type systems. We used Xsemantics to im-
plement the typing rules and operational semantic rules pre-
sented in Section 5. These rules are compiled by Xsemantics
into the AnnotatedMjTypeSystem class, which maps judge-
ments (e.g. type, or exec) to individual Middleweight Java
methods with the corresponding name. Those methods take
as input the environment (composed of heap environmentH,
variable environment E, and type environment Γ), and an
AST element to type.

To check the validity of the contract, our prototype gen-
erates an ASG using Xtext, and uses the AnnotatedMj-

TypeSystem class to check for typing correctness, as well
as operational semantics correctness of the ASG. It then
outputs either typing is successful, or typing has failed. If
typing is successful, all the statements and expressions can
be typed, and therefore they comply with the contract.

Our prototype relies on the BouncyCastle [6] cryptographic
library for signature generation and verification. The imple-
mentation of our prototype is available at [10].

8. CONCLUSION
In this paper we introduced FLEX, a framework for code

authentication. FLEX allows a semi-trusted third party (e.g.
an app meta-market) to perform limited modifications to a

mobile app. The user can verify the authenticity of the ap-
plication at each step of the modification process. In partic-
ular, after downloading an app authenticated using FLEX,
the user can: (i) ascertain that the original app is authentic;
(ii) check if the meta-market modifications comply with the
developer’s specifications; and (iii) determine if the mod-
ifications carried out by the semi-trusted third party have
been tampered.

In order to test the practicality of FLEX, we instanti-
ated it using AMJ—a language we designed to support code
annotations. Because all verification steps are performed
before the app is installed on the user’s smartphone, FLEX
introduces no additional overhead to the app at runtime.

By allowing the user to verify end-to-end authenticity of
both developer’s code and meta-market modifications, we
believe that FLEX overcomes the major limitations of cur-
rent approaches in this space. Moreover, code annotations
do not add substantial complexity to the code development
process because they do not affect the semantics of the code,
making FLEX easy to use for the developer.

Although FLEX is meant for smartphone apps, it can be
easily adapted to authenticate any mobile code, i.e., code
sourced from a remote system and executed locally without
explicit installation (e.g., JavaScript code included in HTML
or PDF documents, Flash animations, etc.) [19]. As part of
our future work, we will extend FLEX to support in-browser
JavaScript authentication. Developers will be able to specify



which parts of their JavaScript code can be modified with-
out invalidating the web page. Companies providing WiFi
connectivity to the user (e.g., Gogo Inflight Internet [11],
Starbucks [25], etc.), could then apply limited modification
to the page’s source. The user would still be able to au-
thenticate (and possibly run) the original code. Because
the contract would be entirely specified within comments, it
would simply be ignored by legacy web browsers.
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APPENDIX
A. TECHNICAL PROOFS

Definition 6. We define the function V Type as follows:

V Type(v,H) =

 > if v = null
void if v = •
C if v = o and H(o) = (C,E)

Definition 7. We write E,H |= Γ if and only if:

∀x.V Type(E(x), H) = τ ∧ τ v Γ(x)

Lemma 1. For each expression e and statement s, and
for all E,H,Γ such that E,H |= Γ, the following holds:

∆; Γ ` e : τ ∧ (E,H, e)→ (E′, H ′, v) =⇒ E′, H ′ |= Γ

∆; Γ ` s : τ ∧ (E,H, s)→ (E′, H ′, v) =⇒ E′, H ′ |= Γ

Proof. The property trivially holds for expressions. In
fact, expressions have no effect on E (i.e., E′ = E), and the
types associated to the entries of H are immutable. With re-
spect to statements, we proceed by induction over the struc-
ture of s:

• Case skip;. Trivially, E′ = E and H ′ = H.

• Case return e;. A direct consequence of the property
for expressions.

• Case x = e;. Since the property holds for e, we know
that E,H ′ |= Γ. Hence, we just need to show that
[x \ v] ◦ E,H ′ |= Γ, which is a consequence of the fact
that V Type(v) v DType(x).

• Case if (e1 == e2) { s1 } else { s2 }. We itera-
tively apply the inductive hypothesis to e1, e2 and s1
(or s2, depending on the applied rule of the operational
semantics).

• Case e.f = e′;. We apply the inductive hypothesis to
e and e′ and we conclude by noticing that the operation
does not change the type of the records in H.

• Case C x in {s}. A direct consequence of the induc-
tive hypothesis applied to s and [x \ null] ◦ E.

• Case s1 s2. We conclude by applying the inductive hy-
pothesis to s1 and s2, in this order.

Lemma 2. For each expression e and statement s and for
all E,H,Γ such that E,H |= Γ the following properties hold

∆; Γ ` e : τ =⇒ ∃v,E′, H′.(E,H, e)→ (E′, H′, v) ∧ V Type(v,H′) v τ
∆; Γ ` s : σ =⇒ ∃v,E′, H′.(E,H, s)→ (E′, H′, v) ∧ V Type(v,H′) v σ

Proof. We proceed by structural induction on e.

• Case null. By (TE-Null), ∆; Γ ` null : > and, by
(EE-Null) (E,H, null) → (E,H,null). Trivially, by
definition, V Type(null, H ′) = > v >.

• Case x. By (TE-Var), ∆; Γ ` x : Γ(x) and, by (EE-
Var) (E,H, x)→ (E,H,E(x)). We conclude by notic-
ing that by assumption E,H |= Γ, V Type(E(x), H) v
Γ(x).

• Case e.f. We instantiate rule (TE-Fld) and apply
the inductive hypothesis to e. As a consequence, we
have that ∆; Γ ` e : C (such that ∆(C)(f) = τ) and
(E,H, e) → (E,H ′, o) with H(o) = C′ � C. We can
conclude since C′ � C implies ∆(C′)(f) = τ (fields
cannot be redefined).

• Case e.m(ē). We follow the same reasoning as above,
but we apply rule (TE-Mth). Hence we obtain that
∆; Γ ` e : C (such that ∆(C)(m) = τ̄ ′′ → τ) and
(E,H, e) → (E,H ′, o) with H(o) = C′ � C. Also,
we iteratively apply the inductive hypothesis to all the
elements of ē starting from the configuration (E,H0, e1)
(with H0 = H ′).6 We obtain that ē are typed τ̄∗ and
generate n values v̄ such that ∀i.V Type(vi, Hi) v τ∗i .
Since τ̄∗ v τ̄ ′′ we can conclude by applying rule (EE-
Mth) (and the assumption that the method body is
correctly typed w.r.t. ∆).

• Case new C(ē). The proof follows the same reasoning as
in the previous case.

• Case (C)e. By inductive hypothesis, we have ∆; Γ ` e :
τ and, by rule (TE-Cst), we know that τ = C′ such
that C′ 4 C. The property holds, since V Type(o,H ′) v
C′ v C.

• Case /*@ ER @*/e. Trivially from the inductive hy-
pothesis.

• Case skip;. By (TS-Skip), ∆; Γ ` skip; : void and,
by (SE-Skip) (E,H, skip;)→ (E,H, •). By definition,
V Type(•, H ′) = void which suffices to conclude.

• Case return e;. We conclude by applying the induc-
tive hypothesis.

• Case x = e;. We start by applying the inductive hy-
pothesis to e. Then, we apply the typing rule (TS-
Asgn) and the operational semantics sule (SE-Asgn)
and we conclude as in the previous case.

• Case if (e1 == e2) { s1 } else { s2 }. We apply the
inductive hypothesis to e1 and e2 (in this order). Then,
we have two symmetric cases depending on whether the
guard evaluates to tt or ff. In both cases, we conclude
by applying the inductive hypothesis (to s1 and s2, re-
spectively).

• Case e.f = e;′. We follow the same reasoning applied
for variable assignments. The only difference is that
here we apply the inductive hypothesis to both e and
e′.

• Case C x in {s}. We apply and assume the premise
of rule (TS-Blk) to obtain ∆; Γ, x : C ` s : σ. To
apply the inductive hypothesis and conclude, we need
to show that [x \null] ◦E,H |= Γ, x : C. However, this
trivially follows from E,H |= Γ and > v C.

• Case s1 s2. Here we have two sub-cases (depending on
which typing rule is applied).

– (TS-Seq1). Again we have two branches, one for
rule (SE-Seqr) and one for (SE-Seqc). The first
one simply requires to apply the inductive hypoth-
esis to s1. Instead, applying (SE-Seqc) we ob-
tain that (E,H, s1)→ (E′, H ′, •). By Lemma 1 we
know that E′, H ′ |= Γ which suffices to apply the
inductive hypothesis to s2 and conclude.

6Condition E,Hi |= Γ is always satisfied due to Lemma 1.



– (TS-Seq2). In this case rule (SE-Seqr) does not
apply (as v 6= • entails that V Type(v) 6= void).
Hence we consider rule (SE-Seqc) and we have
(E,H, s1)→ (E′, H ′, •). Again, we apply Lemma 1
and the inductive hypothesis to conclude.

• Case /*@ SR @*/s. Trivially from the inductive hy-
pothesis.

Theorem 1. For all closed expressions e and statements
s the following properties hold

∅,∆ ` e : τ =⇒ ∃v,E,H.(∅, ∅, e)→ (E,H, v) ∧ V Type(v,H) v τ
∅,∆ ` s : σ =⇒ ∃v,E,H.(∅, ∅, s)→ (E,H, v) ∧ V Type(v,H) v σ

Proof. A corollary of Lemma 2.

B. OPERATIONAL SEMANTICS

Name Rule Side

(EE-Null) (E,H, null)→ (E,H,null)

(EE-Var) (E,H, x)→ (E,H, v) E(x) = v

(EE-Fld)
(E,H, e)→ (E,H ′, o)

(E,H, e.f)→ (E,H ′, v)

H(o) = (C,Eo)
f ∈ Fields(C)
Eo(f) = v

(EE-Mth)

(E,H, e)→ (E,H0, o)
(E,H0, e1)→ (E,H1, v1)

...
(E,Hn−1, en)→ (E,Hn, vn)

([x̄ \ v̄] ◦ Eo, Hn, s)→ (E′o, H
′, v)

(E,H, e.m(ē))→ (E,H ′, v)

H(o) = (C,Eo)
(m, x̄, s) ∈Methods(C)

(EE-New)

(E,H, e1)→ (E,H1, v1)
...

(E,Hn−1, en)→ (E,Hn, vn)
([x̄ \ v̄] ◦ Eo, H

′, s)→ (E′o, H
′′, •)

(E,H, new C(ē))→ (E,H ′′, o)

(x̄, s) ∈ Constructor(C)
o fresh in Hn

f̄ = Fields(C)
Eo = [this \ o, f̄ \ null]
H ′ = [o \ (C,Eo)] ◦Hn

(EE-Cst)
(E,H, e)→ (E,H ′, o)

(E,H, (C)e)→ (E,H ′, o)

H(o) = (D,E)
D 4 C

(SE-Skip) (E,H, skip;)→ (E,H, •)

(SE-Ret)
(E,H, e)→ (E,H ′, v)

(E,H, return e;)→ (E,H ′, v)

(SE-Iftt)

(E,H, e1)→ (E,H ′, v)
(E,H ′, e2)→ (E,H ′′, v′)

(E,H ′′, s1)→ (E1, H1, v1)

(E,H, if (e1 == e2) s1 else s2)→ (E1, H1, v1)

v = v′

(SE-Ifff)

(E,H, e1)→ (E,H ′, v)
(E,H ′, e2)→ (E,H ′′, v′)

(E,H ′′, s2)→ (E2, H2, v2)

(E,H, if (e1 == e2) s1 else s2)→ (E2, H2, v2)

v 6= v′

(SE-Asgn)
(E,H, e)→ (E,H ′, v)

(E,H, x = e;)→ ([x \ v] ◦ E,H ′, •)
x ∈ Dom(E)
V Type(v) v DType(x)

(SE-Fld)

(E,H, e)→ (E,H ′, o)
(E,H ′, e′)→ (E,H ′′, v)

(E,H, e.f = e′;)→ (E, [o \ (C,E′)] ◦H ′′, •)

H ′′(o) = (C,Eo)
f ∈ Fields(C)
E′ = [f \ v] ◦ Eo

(SE-Blk)
([x \ null] ◦ E,H, s)→ (E′, H ′, v)

(E,H, C x in {s})→ (E′|x, H ′, v)

(SE-Seqc)

(E,H, s1)→ (E′, H ′, •)
(E′, H ′, s2)→ (E′′, H ′′, v)

(E,H, s1s2)→ (E′′, H ′′, v)

(SE-Seqr)
(E,H, s1)→ (E′, H ′, v)

(E,H, s1s2)→ (E′, H ′, v)
v 6= •

C. TYPING RULES FOR
EXPRESSIONS AND STATEMENTS

Name Rule Side

(TE-Null) ∆; Γ ` null : >
(TE-Var) ∆; Γ ` x : τ Γ(x) = τ

(TE-Wkn)
∆; Γ ` e : τ

∆; Γ ` e : τ ′
τ v τ ′

(TE-Fld)
∆; Γ ` e : C

∆; Γ ` e.f : τ
∆(C)(f) = τ

(TE-Mth)
∆; Γ ` e : C ∆; Γ ` ē : τ̄

∆; Γ ` e.m(ē) : τ

∆(C)(m) = τ̄ ′′ → τ ′

τ̄ v τ̄ ′′

(TE-New)
∆; Γ ` ē : τ̄

∆; Γ ` new C(ē) : C

∆(C)(new) = τ̄ ′′ → C
τ̄ v τ̄ ′′

(TE-Cst)
∆; Γ ` e : C′

∆; Γ ` (C)e : C
C′ 4 C

(TE-Erew)
∆; Γ ` e : τ ∆; Γ . ER : τ

∆; Γ `/*@ER@*/e : τ

(TS-Skip) ∆; Γ ` skip; : void

(TS-Ret)
∆; Γ ` e : τ

∆; Γ ` return e; : τ

(TS-If)
∆; Γ ` s1 : σ ∆; Γ ` s2 : σ

∆; Γ ` if(e1 == e2) s1 else s2 : σ

(TS-Fld)
∆; Γ ` e : C ∆; Γ ` e′ : τ

∆; Γ ` e.f = e′; : void
∆(C)(f) = τ

(TS-Asgn)
∆; Γ ` e : τ

∆; Γ ` x = e; : void
Γ(x) = τ

(TS-Blk)
∆; Γ, x : C ` s : σ

∆; Γ ` C x in {s} : σ

(TS-Wkn)
∆; Γ ` s : σ

∆; Γ ` s : σ′
σ v σ′

(TS-Seq1)
∆; Γ ` s1 : σ ∆; Γ ` s2 : σ

∆; Γ ` s1 s2 : σ
σ 6= void

(TS-Seq2)
∆; Γ ` s1 : void ∆; Γ ` s2 : σ

∆; Γ ` s1 s2 : σ

(TS-Srew)
∆; Γ ` s : σ ∆; Γ . SR : σ

∆; Γ `/*@SR@*/s : σ


