
Journal of Computer Security -1 (2018) 1–14 1
DOI 10.3233/JCS-171017
IOS Press

The impact of application context on privacy
and performance of keystroke authentication
systems

Kiran S. Balagani a, Paolo Gasti a,∗, Aaron Elliott b, Azriel Richardson c and Mike O’Neal c

a Department of Computer Science, New York Institute of Technology, NY, USA
E-mails: kbalagan@nyit.edu, pgasti@nyit.edu
b Aegis Research Lab, LLC, LA, USA
E-mail: aaron@aegisresearchlabs.com
c Department of Computer Science, Louisiana Tech University, LA, USA
E-mails: azriel_richardson@yahoo.com, mike@coes.latech.edu

Abstract. In this paper, we show that keystroke latencies used in continuous user authentication systems disclose application
context, i.e., in which application user is entering text. Using keystroke data collected from 62 subjects, we show that an
adversary can infer application context from keystroke latencies with 95.15% accuracy.

To prevent leakage from keystroke latencies, and prevent exposure of application context, we develop privacy-preserving
authentication protocols in the outsourced authentication model. Our protocols implement two popular matching algorithms
designed for keystroke authentication, called Absolute (“A”) and Relative (“R”). With our protocols, the client reveals no
information to the server during authentication, besides the authentication result. Our experiments show that these protocols
are fast in practice: with 100 keystroke features, authentication was completed in about one second with the “A” protocol,
and in 595 ms with the “R” protocol. Further, because the asymptotic cost of our protocols is linear, they can scale to a large
number of features. On the other hand, by leveraging application context we were able to reduce HTER from 14.7% with
application-agnostic templates, to as low as 5.8% with application-specific templates.

Keywords: Biometrics, keystroke authentication, privacy, privacy-preserving protocols, application context

1. Introduction

Commercial providers of keystroke-based behavioral authentication services, e.g., Behaviosec [11],
often operate under the outsourced authentication model. In this model, the user’s device collects ag-
gregated keystroke data (e.g., average inter-keystroke latencies computed from hundreds of keystrokes
typed within an authentication window), and sends it to a remote server for authentication. It is therefore
natural to ask what the authentication server can learn from such aggregated latencies.

Multiple studies have shown that aggregated keystroke latencies can be used to infer private infor-
mation such as demographic and affective information [5, 10, 16]. One aspect that has received less
attention is the leakage of application context through aggregated keystroke latencies. In this paper, we
aim to address this gap. We demonstrate that access to aggregated latencies enables the authentication

*Corresponding author. E-mail: pgasti@nyit.edu.

0926-227X/18/$35.00 c© 2018 – IOS Press and the authors. All rights reserved

mailto:kbalagan@nyit.edu
mailto:pgasti@nyit.edu
mailto:aaron@aegisresearchlabs.com
mailto:azriel_richardson@yahoo.com
mailto:mike@coes.latech.edu
mailto:pgasti@nyit.edu


2 The impact of application context on privacy and performance

server to infer which application is being used by the user. We address this newly identified privacy leak-
age by designing two novel cryptographic protocols that allow the implementation of secure outsourced
authentication without disclosing any information to the authentication server, other than the result of
the authentication process.

While the primary contribution of our paper is to address the leakage of information from aggregated
keystroke latencies, we also show that application context can be leveraged to improve authentication
performance in scenarios where authentication is done locally on the device and does not involve sending
latencies to third parties.

The key contributions of this paper can be summarized as follows.

(1) We demonstrate that aggregated keystroke data, such as average key press latencies, can be used to
predict application context with high (95.15%) accuracy. This result was achieved without using
individual keystrokes typed by the user, and is quite worrisome because an authentication server
with access to aggregated latencies can exploit them to learn about user’s routine, activities, and
application usage. For instance, an adversarial server could determine, for each day of the week,
how much time the user is spending on word processing, browsing, or working on spreadsheets.
This represents an unnecessary violation of the user’s privacy, particularly because application
usage information should not have been exposed to a third party if the goal was to authenticate
users using keystrokes.

(2) To address privacy concerns arising from the exposure of keystroke data, we develop novel cryp-
tographic privacy-preserving protocols that prevent information leakage under the outsourced au-
thentication model [1]. Specifically, we introduce two protocols which calculate Absolute (“A”)
and Relative (“R”) measures [20] (defined in Section 5.2), and compare them with protocols that
compute scaled Euclidean and scaled Manhattan distance from Govindarajan et al. [19]. Perfor-
mance evaluation on a standard desktop computer shows that our protocols are practical, because
their overhead is between 35 ms and 4.5 s.

(3) We report the improvement in authentication performance that can be achieved using application-
specific template matching. In our experiments, application-agnostic matching led to an half total
error rate (HTER) of 14.7%, while we were able to achieve significantly better HTER-s with
application-specific matching (5.8% for Microsoft Word, 5.9% with Outlook, and 13.8% with In-
ternet Explorer). Further, authentication with application-specific templates significantly outper-
formed authentication with mismatched templates (i.e., when probe keystrokes from application
X were matched against a template from a different application Y).

Organization. The rest of this paper is organized as follows. In Section 2 we review the related work.
The dataset, matching algorithms, and fusion techniques used in our experiments are summarized in
Section 3. Section 4 reports our results on leakage of application context from keystroke data. We intro-
duce new privacy-preserving protocols for “A” and “R” metrics in Section 5. Authentication accuracy
using application-specific templates is reported in Section 6. We conclude in Section 7.

2. Related work

Next, we briefly review the state of the art on information leakage from keystroke timing informa-
tion, on privacy-preserving protocols for continuous authentication, and on the impact of context on
behavioral authentication. For a general survey on keystroke-based authentication, we refer the reader to
Banerjee et al. [2].



The impact of application context on privacy and performance 3

2.1. Information leakage from keystroke timing information

Song et al. [44] demonstrated a side-channel attack in which latencies between consecutive key press
events were used to reconstruct what the user was typing. The authors used a Hidden Markov Model
(HMM) to predict character sequences from keystroke latencies collected during SSH sessions, and
validated their technique by successfully predicting 8-character passwords for 4 users.

Zhang and Wang [48] demonstrated that inter-key times for all local users can be obtained from the
procfs filesystem exposed by Linux, and that this information can be used to reconstruct character
sequences being typed. The authors demonstrated that the characters inferred from inter-key latencies
reduced password search space by 50 to 2000 times.

There is growing evidence that keystroke latencies can be used to predict demographic information
(e.g., gender, native vs. non-native English speakers), and affective information (e.g., mood, stress level,
engagement, and cognitive load). For instance, Fairhurst et al. [16] achieved less than 5% error rates in
predicting gender from press-press, release-release, press-release, and release-press times. In [5], Bixler
demonstrated that keystroke timing features, combined with task appraisal (e.g., interest in a topic before
performing a writing task on it) and information on the user’s stable traits (e.g., scholastic aptitude),
successfully predicted affective states such as boredom and engagement during writing tasks.

In [10], Brizan et al. observed that keystroke timing information can be used to predict gender and
other demographic information. Their results show that the transition from a punctuation symbol to the
spacebar was faster for male subjects than for female subjects, while the times before and after common
digraphs, such as ‘ou’ and ‘er’ were shorter for female subjects than for male subjects. The authors
also demonstrated that keystroke latencies can be used to distinguish native from non-native English
speakers using the timing information “before and after a period”, “before and after a common digraph”,
and “before and after function keys”.

The research presented in our paper extends the state of the art on keystroke authentication by showing
that application context can be reliably inferred from keystroke timing information.

2.2. Privacy-preserving protocols for continuous authentication

There is extensive literature on the use of privacy-preserving protocols in the context of biometric
authentication and identification. Bringer et al. [9] were the first to introduce a general security model
for biometric user authentication. Their model assumes low trust between the involved parties, and for-
malizes privacy for biometric authentication. Furthermore, [9] introduces a privacy-preserving protocol
that computes the Hamming distance of two bit strings representing a biometric sample and a template
respectively. Barbosa et al. [3] extended the framework of Bringer et al. [9] with a classifier to improve
authentication accuracy and propose an instantiation based on Support Vector Machine (SVM) using
homomorphic encryption.

Schoenmakers and Tuyls [38] introduced a protocol for secure privacy-preserving iris matching. Their
protocol is implemented using threshold ElGamal, and computes (encrypted) Hamming distance be-
tween two bit strings representing a template and a user sample, encoded using IrisCode. The result of
the Hamming distance is then compared, in the encrypted domain, with a threshold.

Erkin et al. [15] introduced the first privacy-preserving face recognition protocol. Sadeghi et al. [36]
subsequently improved the performance of the protocol of Erkin et al. [15]. More recently, Osadchy et
al. [33] designed a new face recognition algorithm together with its privacy-preserving realization called
SCiFI. SCiFI simultaneously improves robustness and efficiency of [15, 36].



4 The impact of application context on privacy and performance

Blanton and Gasti [6] focused on privacy-preserving iris and fingerprint matching. The authors rely
on a hybrid approach based on garbled circuits and homomorphic encryption for optimal performance.

Barni et al. [4] presented a privacy-preserving protocol for fingerprint identification using Finger-
Codes [23]. Their technique is not as discriminative as techniques based on location of minutiae points,
but is particularly well suited for efficient privacy-preserving implementations.

Govindarajan et al. [19] introduced two protocols for continuous smartphone user authentication based
on touchscreen features. Their protocols compute Scaled Manhattan and Scaled Euclidean verifiers,
and are secure in the semi-honest model. Subsequently, Šeděnka et al. [40] improved on the work of
Govindarajan et al. [19] by introducing new scaled Manhattan and scaled Euclidean protocols secure in
the malicious model.

Safa et al. [37] presented a protocol for outsourcing continuous authentication with a Scaled Manhat-
tan verifier on smartphones, and considered security against malicious clients. However, the security ar-
gument presented in their protocol does not take into account information disclosed by order-preserving
encryption. (See, e.g., the analysis of Boldyreva et al. [7].) As such, there is a substantial amount of
information leaked by the client during the protocol, even in the ciphertext-only scenario. In contrast,
our schemes provably leak no information.

Techniques based on fuzzy commitments [25, 26, 39, 46] are commonly used to provide template
protection and to implement access control on encrypted documents. However, such techniques require
biometric comparisons to be performed in a feature space different from that of the original biometrics,
possibly increasing equal error rate (EER) [29]. In contrast, our protocols do not affect the EER of
the underlying biometric modality, since the comparison between the user sample and the template is
functionally the same as the comparison in the unencrypted domain.

While there is prior work on privacy-preserving biometric authentication, this paper is the first to
introduce secure protocols for “A” and “R” metrics. These metrics have been shown to perform well in
multiple keystroke authentication studies (see, for example, [21, 35, 47]).

2.3. Use of context on behavioral authentication

Several papers have leveraged different types of context to enhance the performance of keystroke
authentication systems on desktops. Most popular among these contexts are (1) application context;
(2) linguistic context (e.g., keystroke features collected from specific words); (3) cognitive context (e.g.,
keystroke features collected from typing bursts); and (4) motion context (i.e., keystroke features collected
while walking or while sitting).

Application context. Dowland et al. [14] conjectured that the use of application-specific templates
might impact authentication performance. By analyzing typing data from one user, the authors suggested
that Messenger and Microsoft Word benefit from application-specific templates more than Internet Ex-
plorer and Microsoft PowerPoint.

In contrast to [14], our work uses data from 62 users, and therefore takes into account both false
accept and false reject errors. Further, our work establishes that the use of application context improves
authentication accuracy for most applications by comparing the use of application-specific templates
with application-agnostic and mismatched templates.

Linguistic context. Sim and Janakiraman [42] demonstrated that the discriminability of digraph la-
tencies increased when digraphs were associated with the word they came from. Their experiments,
performed on a dataset collected from 22 users, showed that the inter-user Manahalobis distance of
word-specific digraphs was substantially lower than that of digraphs without word context.



The impact of application context on privacy and performance 5

Goodkind et al. [18] showed that using word context decreased authentication errors. Specifically,
when adding word context to digraphs, EER was reduced by about 1%.

Cognitive context. Locklear et al. [32] performed a study on typing data collected from 486 users.
In their experiments, keystroke features outperformed cognitive features for continuous authentication.
However fusion of the two classes of features led to the lowest authentication EER.

Body motion context. Sitova et al. [43] showed that body motion affects the performance of keystroke-
based authentication on smartphones. Using data from 99 subjects, the authors demonstrated that a
combination of signals from keystroke timings, gyroscope, and accelerometer sensors leads to higher
authentication accuracy when users were walking, compared to sitting.

3. Dataset and authentication algorithms

Dataset. The dataset used in this work was collected from 62 subjects, who at the time of data col-
lection were cadets of the United States Military Academy at West Point, New York.1 Each user ran
the data collection application on her/his personal computer for a period of two weeks. The application
collected data 24 hours a day, 7 days a week. The entire data collection process was performed within
a 6-week period. The dataset contains keystroke dynamics data collected during the following activi-
ties: (1) web browsing using Microsoft Internet Explorer; (2) word processing using Microsoft Word;
(3) email composition with Microsoft Outlook; and (4) performing scientific calculations with Wolfram
Mathematica.

Feature categories. We extracted six different categories of features from our dataset. Each category
is a collection of individual keystroke features. The categories are: (1) KHL: contains key hold latency
(down-up time) of each key as features; (2) IK: contains key interval latency (up-down time) of each
pair of consecutive keys; (3) KRL: contains key release latency (up-up time) of each pair of consecutive
keys; (4) KeyHoldWithNextVKCode: contains key hold with next key context preserved (e.g., key hold
latency when typing letter ‘a’ followed by typing letter ‘m’ is treated differently from the latency of ‘a’
followed by letter ‘n’); and (5) KeyHoldWithPrevVKCode: contains key hold with previous key context
preserved (e.g., key hold latency while typing letter ‘h’ when it is preceded by letter ‘t’ is treated
differently from the latency of ‘h’ when preceded by letter ‘g’); and (6) KH2: contains key hold with
word context (e.g., key hold of ‘a’ in the word ‘ball’ is different from key hold of ‘a’ in ‘lab’).

Prediction and matching algorithms. For predicting application context from aggregated keystroke
information, we used Random Forest [8], Naïve Bayes [31], and Tree-augmented Naïve Bayes [49]
classifiers.

For biometric verification, we used five different matching algorithms that have been used previously
in keystroke authentication studies. They are: (1) Scaled Manhattan [28], (2) Scaled Euclidean [28],
(3) “A” [20], (4) Similarity [24]; and (5) “R” [20].

Fusion. Decisions from all verifier-feature pairs were combined, or fused together, to make an overall
authentication decision. We used a weighted decision fusion method to fuse the individual authentication
results [22, 30]. We implemented weighing of classifier decisions using the Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm [45].

1An IRB approval was obtained prior to performing data collection.



6 The impact of application context on privacy and performance

4. Prediction of application context from aggregated keystroke latencies

While it is straightforward to infer application context from individual keystrokes, it might appear
that the same information cannot be inferred from aggregated keystroke timings (e.g., average inter-
key latencies computed from hundreds of keystrokes typed within an authentication window). In this
section, we show that aggregated keystroke latencies can be used to predict application context with
high accuracy. We formulate this problem as a classification problem, where the underlying applications
form the class labels, and aggregated keystroke data collected from each application was used to train
the classification model. The goal of this task was to correctly identify the application, given a vector of
keystroke statistics.

For training, we used all keystroke data from 31 users, while for testing we used all keystrokes from a
separate group of 31 users who were not included in training. For each user, we divided the keystrokes
from each application into two sets. Each set was used to construct one vector, as long as the set contained
at least 8,800 keystrokes. This allowed us to build 206 training vectors from the first group of 31 users,
and 206 testing vectors from the remaining users.

We computed the following three statistics from the individual keystroke features: standard deviation,
mean, and normalized count (the number of occurrences of a feature, divided by the number of occur-
rences of all features). Using the following example, we illustrate how these statistics were computed.
Let ‘aaa bbb ccc’ be the text typed by a subject. For the KHL category, we computed the average,
standard deviation, and normalized count of keyhold timings of all a’s, then of all b’s, and finally of all
c’s. In a similar fashion, we computed the statistics for all the remaining feature categories. We used the
statistics from all categories as input to the classifier.

We used four classes: Microsoft Word, Microsoft Internet Explorer, Microsoft Outlook, and Wolfram
Mathematica. Our results are presented in Tables 1 and 2.

Table 1
Context identification accuracies, listed by feature categories. Darker cells corresponds to higher accuracy. We use RF to
indicate Random Forests; NB for Naïve Bayesian; and TAN to indicate Tree-Augmented Naïve Bayesian

RF
Accuracy

NB
Accuracy

TAN
Accuracy

RF
Accuracy

NB
Accuracy

TAN
Accuracy

RF
Accuracy

NB
Accuracy

TAN
Accuracy

100 Most Available Features 50 Most Available Features 10 Most Available Features
All 94.66% 87.86% 85.92% 91.75% 88.35% 84.47% 80.58% 79.13% 78.16%
All but IK 94.66% 86.41% 88.35% 92.23% 87.86% 84.47% 79.13% 80.58% 75.24%
All but KeyHoldWithNextVKCode 94.66% 85.44% 87.38% 91.75% 88.35% 85.92% 81.07% 79.61% 77.67%
All but KeyHoldWithPrevVKCode 94.66% 86.41% 85.92% 92.72% 87.38% 84.95% 80.1% 78.16% 78.16%
All but KH2 94.66% 87.86% 84.95% 91.75% 88.35% 87.38% 80.1% 78.64% 78.16%
All but KPL 94.17% 85.92% 86.89% 93.2% 88.83% 84.95% 80.1% 81.07% 75.73%
All but KRL 93.69% 86.41% 87.38% 91.75% 88.35% 84.95% 79.13% 81.07% 77.18%
All but KH 93.2% 88.35% 85.92% 89.32% 83.5% 84.95% 76.21% 78.16% 76.21%

In Table 1 we report our results for the 100, 50, and 10 most available features for each feature cat-
egory. “All” means that the classifier was trained using all statistics computed on all feature categories.
“All but IK” means the features in the IK category were excluded from the experiments. Classifica-
tion accuracy was calculated as number of correctly classified sessions divided by the total number of
sessions. Our results with Random Forest (the best performer among the tested classifiers) show that
excluding a single feature category does not significantly affect performance (see Table 1). In fact, by
removing each individual feature category, the drop in accuracy is always below 3% with the 100 and
50 most available features, and below 5% with the 10 most available features.



The impact of application context on privacy and performance 7

Table 2

RF
Accuracy

NB
Accuracy

TAN
Accuracy

RF
Accuracy

NB
Accuracy

TAN
Accuracy

RF
Accuracy

NB
Accuracy

TAN
Accuracy

100 Most Available Features 50 Most Available Features 10 Most Available Features
STDDEV, NORMALIZEDCOUNT 95.15% 88.83% 86.89% 91.75% 88.35% 84.95% 79.61% 81.55% 78.16%
MEAN, STDDEV, NORMALIZEDCOUNT 94.66% 87.86% 85.92% 91.75% 88.35% 84.47% 80.58% 79.13% 78.16%
MEAN, NORMALIZEDCOUNT 94.17% 88.35% 87.38% 92.72% 89.32% 87.38% 80.58% 79.61% 77.67%
NORMALIZEDCOUNT 94.17% 89.81% 87.38% 92.23% 89.32% 87.86% 80.1% 81.55% 77.67%
MEAN, STDDEV 58.25% 62.14% 57.28% 61.17% 57.28% 53.88% 47.57% 49.51% 46.6%

In Table 2, we report our results for the 100, 50, and 10 most available features for each statistic. For
example, the normalized count row in Table 2 shows the application prediction accuracy achieved using
the normalized counts of the 100, 50, and 10 most available features in each feature category.

We were able to achieve over 95% classification accuracy with the 100 most available features, using
standard deviation and normalized count statistics with Random Forests. Normalized count is the statis-
tic that contributes the most to the classification accuracy. As shown in the last row of Table 2 (MEAN,
STDDEV), when this statistic was excluded, classification accuracy dropped to 62.1% or less.

Sub-contexts within an application. The results presented in this section were achieved without iso-
lating overlapping sub-contexts within each application. For instance, it is possible that users composed
emails and performed word processing tasks using Internet Explorer. The former task would overlap
with Microsoft Outlook, while the second with Microsoft Word. Despite such possibility of overlap, we
were able to reliably distinguish between application context.

5. Privacy-preserving protocols for keystroke authentication

To address application context leakage under the outsourced keystroke authentication model, we in-
troduce new privacy-preserving protocols for “A” and “R” matching algorithms. Our protocols allow a
client to authenticate its user by exchanging encrypted information with a server. The server stores an
encrypted copy of the user’s template, and learns the outcome of the authentication process. Our proto-
cols provably reveal no information about the keystroke data to the server, which is therefore unable to
infer application context or any other ancillary information. Moreover, our protocols reveal no informa-
tion on the template to the client and the server. Before we introduce our protocols, we briefly review
cryptographic preliminaries.

5.1. Cryptographic preliminaries

Security model. We use the term adversary to refer to protocol participants (i.e., the client and the
authentication server). Outside adversaries can be mitigated via standard network security techniques
(e.g., TLS), and are therefore not considered in our analysis.

Our protocols are secure against semi-honest (or honest-but-curious) adversaries. Semi-honest partic-
ipants are assumed to follow prescribed protocol behavior. However, they might try to learn additional
information beyond the protocol output by analyzing messages exchanged during protocol execution.
Formally [17]:

Definition 1. Let P1 and P2 participate in protocol π that computes function f (in1, in2) = (out1, out2),
where ini and outi denote Pi’s input and output, respectively. Let VIEWπ(Pi) denote the view of partici-
pant Pi during the execution of protocol π. Pi’s view is formed by its input, internal random coin tosses



8 The impact of application context on privacy and performance

ri, and messages m1, . . . ,mt passed between the parties during protocol execution:

VIEWπ(Pi) = (ini, ri,m1, . . . ,mt).

We say that protocol π is secure against semi-honest adversaries if, for i ∈ {1, 2}, there exists a proba-
bilistic polynomial time simulator S i such that:{

S i
(
ini, fi(in1, in2)

)}
≡
{

VIEWπ(Pi), outi
}

Homomorphic encryption and comparison. In an additively homomorphic encryption scheme,
Enc(m1) · Enc(m2) = Enc(m1 + m2) which also implies that Enc(m)a = Enc(a · m).

Our constructions can be instantiated using any semantically secure additively homomorphic encryp-
tion scheme (e.g., [12, 13, 34]). We instantiate our protocols using the homomorphic construction of
Damgård et al. [12, 13] (henceforth, DGK), because it is faster [6] (and produces smaller ciphertexts)
than the well known Paillier cryptosystem [34]. In the rest of the paper, we use [[m]] to refer to the DGK
encryption of message m under the server’s public key. (The server has access to the corresponding
decryption key.)

Our privacy-preserving “A” and “R” protocols rely on the comparison protocol of Erkin et al. [15]. This
interactive protocol allows the client to compare two values encrypted using a homomorphic scheme,
without having access to the decryption key, and without learning anything besides the output of the
protocol.

Symmetric encryption. Our protocols use a semantically secure symmetric encryption scheme for
protecting the template. In our implementation, we use AES in counter (CTR) mode. We use Ec(m)
to indicate symmetric encryption performed under a key known by Client.

5.2. Protocols description

Our protocols are divided in two phases: enrollment, and verification. Enrollment is executed once per
user (or when the user wants to updates her biometric profile), while verification is performed periodi-
cally (e.g., every 60–120 seconds).

In the enrollment phase, the client constructs the user’s template by extracting features from keystroke
data. The template is encrypted with homomorphic encryption under the server’s public key, and then
with symmetric encryption using a key known only to the client (e.g., a user-provided password). The
resulting ciphertext is stored on the server, which cannot reconstruct the unencrypted template because
it has no access to the symmetric encryption key.

The client constructs a user template y = {y1, . . . , yn}. For our “A” metric protocol, the encrypted
template is then computed as Ec(y) = Ec([[y1]], . . . , [[yn]]), and Ec(1/y) = Ec([[1/y1]], . . . , [[1/yn]]).
For our “R” metric protocol, the encrypted template is computed as Ec(y) = Ec(〈[[rankaa]],aa〉, . . . ,
〈[[rankzz]],zz〉), where ranki ∈ {1, . . . , n}, and ranki 6= rank j for all i 6= j.

Next, we present the verification phase for each of our privacy-preserving protocols. Our protocols for
computing “A” and “R” measures are illustrated in Algorithms 1 and 2, respectively.

Privacy-preserving “A” measure. Gunetti et al. [20] define the similarity between two n-graphs oc-
curring in two typing samples as max(d1, d2)/min(d1, d2), where di is the timing associated with each
n-graph. Then, the “A” distance is defined as the number of similar n-graphs divided by the total num-
ber of n-graphs. We implement this measure by using two runs of the comparison protocol of Erkin et



The impact of application context on privacy and performance 9

Algorithm 1 Our privacy-preserving “A” measure protocol
Input: Client: sample x = (x1, . . . , xn), Server’s public key for [[·]] and decryption key for Ec(·); Server:
encrypted template Ec(y) = Ec([[y1]], . . . , [[yn]]),Ec(1/y) = Ec([[1/y1]], . . . , [[1/yn]]), and decryption key
for the homomorphic encryption scheme [[·]].
Output: Server learns the “A” similarity measure between x and y.
Protocol steps:

(1) Server sends Ec(y) and Ec(1/y) to Client which decrypts it, obtaining [[y1]], . . . , [[yn]] and
[[1/y1]], . . . , [[1/yn]].

(2) For i = 1, . . . , n, Client and Server engage in privacy-preserving comparison of [[xi]] and [[yi]]. Let
the result of each comparison be [[bi]], where bi , xi > yi.

(3) For i = 1, . . . , n, Client and Server compute [[di]] = [[max(xi, yi)/min(xi, yi)]] as
[[(bi · (xi − yi) + yi) · (bi · (1/xi − 1/yi) + 1/yi)]]. This requires Client and Server to jointly compute
three products.

(4) Then, Client and Server engage in the comparison protocol to compute the encryption of b′i , di < t
(5) Client computes the “A” distance as:

[[d]] =

[[(
n∑

i=1

b′i

)]]
=

n∏
i=1

[[bi]]

(6) Client sends [[d]] to Server, which decrypts it and outputs d/n.

al. [15] (one to compute min and max, and the other to compare the similarity of two n-graphs with the
threshold). The privacy-preserving protocol implementing “A” distance is detailed in Algorithm 1.

Privacy-preserving “R” measure. In order to implement “R” distance, we reduce it to Manhattan
distance as follows. The user’s template is composed of a set of digraphs, together with their rank (stored
in encrypted form). During authentication, the user’s sample x determines the ranking of features for the
session. Client ranks the elements from the encrypted template according to x. If x and the encrypted
template are ranked identically, then Client obtains the encrypted list y = 1, . . . , n. If not, some of the
elements of y will not be in the correct order. Therefore, the Manhattan distance between y and 1, . . . , n,
normalized by n, is the “R” distance. The privacy-preserving protocol implementing “R” distance is
shown in Algorithm 2.

5.3. Performance analysis

The computational complexity of “R” protocols is O(n) for both the client and the server, where n
is the number of features. Analogously, the complexity of our “A” protocol is O(n) for both Client and
Server. For reference, the complexity of the scaled Euclidean protocol from [19] is O(n) for the client,
and O(1) for the server, while the complexity of the scaled Manhattan protocol is O(n) for both the
client and the server.

We performed experiments on a Linux system with two Intel Xeon E5420 CPUs running at 2.5 GHz.
Our prototype implementation is written in C, and relies on the GNU GMP library. Table 3, summarizes
the performance results of our protocol implementation with 25–400 features. These results are obtained
representing each feature using 10 bits. The cost of the “R” protocol is dominated by the computation



10 The impact of application context on privacy and performance

Algorithm 2 Our privacy-preserving “R” measure protocol. Without loss of generality, the protocol is
shown with the use of digraphs. It is easy to see how it can be easily extended to use arbitrary n-graphs
Input: Client: sample x = (x1, . . . , xn), Server’s public key for [[·]], and decryption key for Ec(·); Server:
encrypted template Ec(y) = Ec(〈[[rankaa]],aa〉, . . . , 〈[[rankzz]],zz〉) (where ranki ∈ {1, . . . , n}, and
ranki 6= rank j for all i 6= j), and decryption key for the homomorphic encryption scheme [[·]].
Output: Server learns the “R” similarity measure between x and y.
Protocol steps:

(1) Server sends Ec(y) to Client, which decrypts it, obtaining 〈[[rankaa]],aa〉, . . . , 〈[[rankzz]],zz〉.
(2) Client ranks (sorts) [[rankaa]], . . . , [[rankzz]] according to x. Let [[r1]], . . . , [[rn]] indicate the result of

this process.
(3) Client and Server engage in the privacy-preserving Manhattan protocol, where [[y]] = [[r1]], . . . , [[rn]],

and w = (1, . . . , n). At the end of the protocol, Server learns Manhattan distance d between w and
[[r1]], . . . , [[rn]].

(4) Server, outputs d as the “R” distance.

Table 3
Performance of our prototype implementation. Because the performance difference between scaled Manhattan and “R” is
negligible, we report the two protocols together

Scaled Manhattan [19]/R Scaled Euclidean [19] A Measure
# of Feat. Server Client Server Client Server Client
25 149 ms 35 ms ≈ 1 ms 22 ms 276 ms 37 ms
50 298 ms 71 ms ≈ 1 ms 44 ms 551 ms 74 ms
100 595 ms 142 ms ≈ 1 ms 88 ms 1102 ms 147 ms
200 1190 ms 284 ms ≈ 1 ms 178 ms 2205 ms 294 ms
400 2380 ms 568 ms ≈ 1 ms 355 ms 4409 ms 589 ms

of the privacy-preserving scaled Manhattan distance. Therefore, we report the performance of the two
protocols combined.

Our client and server implementations are single core. This allows straightforward performance com-
parison with the related work. However, all protocols presented in this paper can greatly benefit from
multiple cores, because most operations can be performed in parallel on different features.

5.4. Security analysis

The security of our protocols relies on the security of the underlying building blocks. In our analysis,
we assume that [[·]] is a semantically secure homomorphic encryption scheme, and that Ec(·) is a seman-
tically secure symmetric encryption scheme. In our instantiation, [[·]] was implemented using the DGK
encryption scheme, which was shown to be semantically secure [12, 13]. To implement Ec(·), we used
AES-CTR, which is known to be semantically secure under standard assumptions [27]. The privacy-
preserving comparison protocol of Erkin et al. was shown to be secure in [15], and therefore it is not
included it in our analysis. Finally, the privacy-preserving scaled Manhattan protocol used to construct
our “R” protocol was proved secure in [19].

To show that our protocols are secure, next we describe how to simulate the view of each party using
its inputs and outputs alone. Because these simulations are indistinguishable from the real execution of



The impact of application context on privacy and performance 11

the protocol, for semi-honest parties this implies that the protocols do not reveal any information besides
the protocol output to the client and server.

Privacy-preserving “R” verifier. The security of the privacy-preserving protocol implementing the
“R” verifier reduces to the security of the privacy-preserving Manhattan distance protocol used in Step 3
of Algorithm 2. In fact, because of the semantic security of Ec(·), Server does not learn information
about the biometric template (including which n-graphs have been include in the template) from the
encrypted template. Further, because of the semantic security of [[·]], Client does not learn information
about n-graph ranking in the template. Because Step 3 of Algorithm 2 does not disclose any information
to Client and Server besides their inputs and outputs, the protocol in Algorithm 2 is secure against
honest-but-curious Client and Server.

Privacy-preserving “A” verifier. Since Ec(·) is semantically secure, the server cannot extract any
information from [[y]]. The server’s view of the protocols consists of the decryption key for [[·]], encrypted
vector [[y]], and ciphertext [[d]] from the client. (The server’s view also contains the message exchanged
during the comparison and multiplication protocols. We ignore these messages since the two protocols
have been proven secure in [15].) The server’s output is d/n. Simulator S s provides the server with [[y]]
and with the decryption key for [[·]] as input. It then uses the protocol output d/n to build [[d]], which is
sent to the server. Since [[d]] is properly distributed, the server cannot distinguish between the simulation
and a real execution of the protocol. Therefore, the protocol is secure against an honest-but-curious
server.

The client’s view of the protocol consists in the server’s public key, the symmetric key for Ec(·),
sample x, and encrypted template [[y]] and [[1/y]]. The client has no output. Simulator S c selects a random
set of values y′1, . . . , y

′
n, constructs [[y′]] = Ec([[y′1]], . . . , [[y

′
n]]), and [[1/y′]] = Ec([[1/y′1]], . . . , [[1/y

′
n]]), and

sends them to the client. The semantic security of [[·]] prevents the client from determining that [[y′]] and
[[1/y′]] correspond to the encryption of random values. Therefore, [[y′]] and [[1/y′]] are properly distributed.
For this reason, the client cannot distinguish between interaction with the S c and with a honest server.
Hence the protocol is secure against a honest-but-curious client.

6. Authentication accuracy using application-specific templates

When authentication is performed locally on the user’s device, disclosure of application context to
the authentication system does not represent a privacy violation. Assuming this use case, we show that
it is possible to use application-specific templates to improve authentication accuracy. Our results pro-
vide empirical evidence that leveraging application context improves authentication accuracies. We con-
structed application-specific templates by using all keystroke data from one application at a time. For
instance, we constructed a Microsoft Word-specific template by computing the average of each feature
value collected while the users were typing text in Word.

Table 4 shows the impact of application-specific matching in keystroke-based verification. We report
accuracy results, expressed in terms of HTER, for templates constructed using 1,100 keystrokes. HTER
is a standard accuracy measure defined as (FAR+FRR)/2, where FAR represents the percentage of vec-
tors from an impostor incorrectly classified as vectors from the legitimate user (false accept rate), and
FRR the percentage of vectors from the legitimate user incorrectly classified as impostor vectors (false
reject rate) [41]. The diagonal (highlighted in bold) indicates the HTER-s obtained for application-
specific matching (i.e., test vectors collected within an application are matched with the templates from
the same application). The non-diagonal cells represent HTER-s obtained when the test vectors from an



12 The impact of application context on privacy and performance

Table 4
Performance of keystroke verification using fusion of A, R, SE, and SM verifiers on key hold, key press, digraph, key hold with
next, key hold with previous. Templates are constructed using 1,100 keystrokes

Testing (Session 2)
Word Internet Explorer Outlook Mathematica

Training
(Session 1)

Word 0.0582 (σ = 0.0442) 0.2766 (σ = 0.1177) 0.0810 (σ = 0.0707) 0.3247 (σ = 0.1451)
Internet Explorer 0.1167 (σ = 0.0753) 0.1375 (σ = 0.0390) 0.1190 (σ = 0.0932) 0.3015 (σ = 0.1306)
Outlook 0.0726 (σ = 0.0584) 0.2645 (σ = 0.1053) 0.0589 (σ = 0.0523) 0.3499 (σ = 0.1615)
Mathematica 0.2434 (σ = 0.1532) 0.3014 (σ = 0.1306) 0.2639 (σ = 0.1581) 0.1770 (σ = 0.1104)

Table 5
Number of users with at least 1,100 keystrokes for each combination of training and testing

Testing (Session 2)
Word Internet Explorer Outlook Mathematica

Training
(Session 1)

Word 62 51 58 35
Internet Explorer 51 51 49 32
Outlook 56 47 56 34
Mathematica 34 31 34 34

application are matched against a template from a different application (cross-template matching). Our
results show that the HTER-s obtained for application-specific matching are considerably lower than
HTER-s obtained with cross-template matching.

On the other hand, the HTER of application-agnostic matching, i.e., the template and the test vec-
tors were constructed using keystrokes from all applications, was 14.7%. This is therefore less accurate
than application-specific matching – with the exception of Mathematica. However, further experiments
show that the HTER increase associated with Mathematica can be attributed to the lower number of
keystroke available in this application: as we increase the number of keystrokes used in the construc-
tion of application-specific user templates from 1,100 to 1,400, we observed a reduction in HTER to
10.6%, although with data from 26 users instead of 34. (Availability information for 1,100 keystrokes is
presented in Table 5.)

7. Conclusion

In this paper, we showed that application context impacts both privacy and performance of keystroke
authentication. We were able to measure application-specific variations from aggregated keystroke data,
and successfully used them to identify application context with over 95% accuracy. Because the identi-
fication of application context raises significant privacy concerns when authentication is outsourced to
a third-party server, we designed two new privacy-preserving protocols for continuous user authentica-
tion with keystroke data. Our protocols incur relatively small overhead (595 ms for “R” computation of
distance, and 1.1 s for “A” distance, using 100 keystroke features), and disclose no information besides
the outcome of the authentication process to the server.

We then determined whether application context can be used to improve authentication accuracy.
Using application-specific templates we successfully reduced HTER from 14.7% (with application-
agnostic matching) down to 5.8% for Microsoft Word, 5.9% for Microsoft Outlook, and 13.8% for
Microsoft Internet Explorer. However, because of the low availability of keystroke samples, the HTER
of Mathematica was higher than the baseline at 17.7%.



The impact of application context on privacy and performance 13

Acknowledgments

This work was supported in part by DARPA Active Authentication grant FA 8750-13-2-0274. The
views, findings, recommendations, and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the sponsoring agencies or the U.S. Government.

The authors thank Colonel Ron Dodge (United States Military Academy, West Point, NY) and his
team for leading the data collection effort.

References

[1] AdmitOne Security Sentry, http://www.admitonesecurity.com.
[2] S.P. Banerjee and D.L. Woodard, Biometric authentication and identification using keystroke dynamics: A survey, Journal

of Pattern Recognition Research 7(1) (2012), 116–139. doi:10.13176/11.427.
[3] M. Barbosa, T. Brouard, S. Cauchie and S. de Sousa, Secure biometric authentication with improved accuracy, in: Pro-

ceedings of the 13th Australasian Conference on Information Security and Privacy, 2008.
[4] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti and

A. Piva, Privacy-preserving fingercode authentication, in: Proceedings of the 12th ACM Workshop on Multimedia and
Security, 2010.

[5] R. Bixler and S. D’Mello, Detecting boredom and engagement during writing with keystroke analysis, task appraisals, and
stable traits, in: Proceedings of the 2013 International Conference on Intelligent User Interfaces, ACM, 2013, pp. 225–
234.

[6] M. Blanton and P. Gasti, Secure and efficient protocols for iris and fingerprint identification, in: Proceedings of the 16th
European Conference on Research in Computer Security (ESORICS), 2011.

[7] A. Boldyreva, N. Chenette and A. O’Neill, Order-preserving encryption revisited: Improved security analysis and alter-
native solutions, in: Advances in Cryptology – CRYPTO, 2011.

[8] L. Breiman, Random forests, Machine learning 45(1) (2001), 5–32. doi:10.1023/A:1010933404324.
[9] J. Bringer, H. Chabanne, M. Izabachene, D. Pointcheval, Q. Tang and S. Zimmer, An application of the Goldwasser–

Micali cryptosystem to biometric authentication, in: Proceedings of the 12th Australasian Conference on Information
Security and Privacy, 2007.

[10] D.G. Brizan, A. Goodkind, P. Koch, K. Balagani, V.V. Phoha and A. Rosenberg, Utilizing linguistically enhanced
keystroke dynamics to predict typist cognition and demographics, International Journal of Human-Computer Studies
82 (2015), 57–68. doi:10.1016/j.ijhcs.2015.04.005.

[11] Continuous Authentication – Behaviosec, http://www.behaviosec.com.
[12] I. Damgård, M. Geisler and M. Krøigård, Homomorphic encryption and secure comparison, Journal of Applied Cryptol-

ogy 1(1) (2008).
[13] I. Damgård, M. Geisler and M. Krøigård, A correction to efficient and secure comparison for on-line auctions, 2008.
[14] P. Dowland, S. Furnell and M. Papadaki, Keystroke analysis as a method of advanced user authentication and response,

in: Security in the Information Society, Springer, 2002, pp. 215–226.
[15] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk and T. Toft, Privacy-preserving face recognition, in:

Privacy Enhancing Technology Symposium (PETS), 2009.
[16] M. Fairhurst, D. Costa-Abreu et al., Using keystroke dynamics for gender identification in social network environment,

in: Imaging for Crime Detection and Prevention 2011 (ICDP 2011), 4th International Conference on, IET, 2011, pp. 1–6.
[17] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications, Cambridge University Press, 2004.

doi:10.1017/CBO9780511721656.
[18] A. Goodkind, D.G. Brizan and A. Rosenberg, Improvements to keystroke-based authentication by adding linguistic con-

text, in: Biometrics Theory, Applications and Systems (BTAS), 2015 Seventh IEEE International Conference on, IEEE,
2015, pp. 1–6.

[19] S. Govindarajan, P. Gasti and K. Balagani, Secure privacy-preserving protocols for outsourcing continuous authentication
of smartphone users with touch data, in: Biometrics Theory, Applications and Systems (BTAS), 2013 IEEE International
Conference on, 2013.

[20] D. Gunetti and C. Picardi, Keystroke analysis of free text, ACM Transactions on Information and System Security (TIS-
SEC) 8(3) (2005), 312–347. doi:10.1145/1085126.1085129.

[21] J. Hu, D. Gingrich and A. Sentosa, A k-nearest neighbor approach for user authentication through biometric keystroke
dynamics, in: IEEE International Conference on Communications (ICC), IEEE, 2008, pp. 1556–1560.

http://www.admitonesecurity.com
http://www.behaviosec.com


14 The impact of application context on privacy and performance

[22] A. Jain, K. Nandakumar and A. Ross, Score normalization in multimodal biometric systems, Pattern recognition 38(12)
(2005), 2270–2285. doi:10.1016/j.patcog.2005.01.012.

[23] A. Jain, S. Prabhakar, L. Hong and S. Pankanti, Filterbank-based fingerprint matching, IEEE Transactions on Image
Processing 9(5) (2000).

[24] S.S. Joshi, Naive Bayes and Similarity Based Methods for Identifying Computer Users Using Keystroke Patterns, Disser-
tation, Louisiana Technical University, 2009.

[25] A. Juels and M. Sudan, A fuzzy vault scheme, in: International Symposium on Information Theory (ISIT), 2002.
[26] A. Juels and M. Wattenberg, A fuzzy commitment scheme, in: ACM Conference on Computer and Communications

Security (CCS), 1999.
[27] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman & Hall/CRC, 2008.
[28] K. Killourhy and R. Maxion, Comparing anomaly-detection algorithms for keystroke dynamics, in: Proceedings of the

Annual IEEE/IFIP Intl. Conference on Dependable Systems and Networks, 2009.
[29] G. Kumar, S. Tulyakov and V. Govindaraju, Combination of symmetric hash functions for secure fingerprint matching,

in: Proceedings of the 20th Intl. Conference on Pattern Recognition, 2010.
[30] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, John Wiley & Sons, 2004.

doi:10.1002/0471660264.
[31] D.D. Lewis, Naive (Bayes) at forty: The independence assumption in information retrieval, in: European Conference on

Machine Learning (ECML), Springer, 1998, pp. 4–15.
[32] H. Locklear, S. Govindarajan, Z. Sitova, A. Goodkind, D.G. Brizan, A. Rosenberg, V.V. Phoha, P. Gasti and K.S. Balagani,

Continuous authentication with cognition-centric text production and revision features, in: Biometrics (IJCB), 2014 IEEE
International Joint Conference on, IEEE, 2014, pp. 1–8.

[33] M. Osadchy, B. Pinkas, A. Jarrous and B. Moskovich, SCiFI – A system for secure face identification, in: IEEE Symp. on
Security and Privacy, 2010.

[34] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1999.

[35] K.A. Rahman, K.S. Balagani and V.V. Phoha, Snoop-forge-replay attacks on continuous verification with keystrokes,
Information Forensics and Security, IEEE Transactions on 8(3) (2013), 528–541. doi:10.1109/TIFS.2013.2244091.

[36] A.-R. Sadeghi, T. Schneider and I. Wehrenberg, Efficient privacy-preserving face recognition, in: Intl. Conference on
Information Security and Cryptology, 2009.

[37] N. Safa, R. Safavi-Naini and S. Shahandashti, Privacy-preserving implicit authentication, in: ICT Systems Security and
Privacy Protection, 2014.

[38] B. Schoenmakers and P. Tuyls, Security with noisy data: Private biometrics, secure key storage and anti-counterfeiting,
Springer-Verlag, 2007, Chap. “Computationally secure authentication with noisy data”.

[39] J. Šeděnka, K. Balagani, V. Phoha and P. Gasti, Privacy-preserving population-enhanced biometric key generation from
free-text keystroke dynamics, in: Biometrics (IJCB), 2014 IEEE International Joint Conference on, 2014.

[40] J. Sedenka, S. Govindarajan, P. Gasti and K.S. Balagani, Secure outsourced biometric authentication with perfor-
mance evaluation on smartphones, Information Forensics and Security, IEEE Transactions on 10(2) (2015), 384–396.
doi:10.1109/TIFS.2014.2375571.

[41] C. Shen, Z. Cai, X. Guan, Y. Du and R.A. Maxion, User authentication through mouse dynamics, IEEE Transactions on
Information Forensics and Security 8(1) (2013), 16–30. doi:10.1109/TIFS.2012.2223677.

[42] T. Sim and R. Janakiraman, Are digraphs good for free-text keystroke dynamics?, in: Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, pp. 1–6.

[43] Z. Sitova, J. Sedenka, Q. Yang, G. Peng, G. Zhou, P. Gasti and K. Balagani, HMOG: A new biometric modality for
continuous authentication of smartphone users, in: IEEE Transactions on Information Forensics & Security, 2015.

[44] D.X. Song, D. Wagner and X. Tian, Timing analysis of keystrokes and timing attacks on SSH, in: USENIX Security
Symposium, Vol. 2001, 2001.

[45] J.C. Spall, Simultaneous perturbation stochastic approximation, Introduction to Stochastic Search and Optimization: Es-
timation, Simulation, and Control (2003), 176–207.

[46] U. Uludag, S. Pankanti and A. Jain, Fuzzy vault for fingerprints, in: Audio-and Video-Based Biometric Person Authenti-
cation, 2005.

[47] N. Yager and T. Dunstone, The biometric menagerie, Pattern Analysis and Machine Intelligence, IEEE Transactions on
32(2) (2010), 220–230. doi:10.1109/TPAMI.2008.291.

[48] K. Zhang and X. Wang, Peeping Tom in the neighborhood: Keystroke eavesdropping on multi-user systems, USENIX
Security Symposium 20 (2009), 23.

[49] F. Zheng and G.I. Webb, Tree augmented naive Bayes, in: Encyclopedia of Machine Learning, Springer, 2011, pp. 990–
991.


	Introduction
	Related work
	Information leakage from keystroke timing information
	Privacy-preserving protocols for continuous authentication
	Use of context on behavioral authentication

	Dataset and authentication algorithms
	Prediction of application context from aggregated keystroke latencies
	Privacy-preserving protocols for keystroke authentication
	Cryptographic preliminaries
	Protocols description
	Performance analysis
	Security analysis

	Authentication accuracy using application-specific templates
	Conclusion
	Acknowledgments
	References

